论文部分内容阅读
针对传统的稀疏表示分类算法中面部对齐受限而影响人脸识别率的问题,提出一种基于约束采样和面部对齐的稀疏表示分类算法。首先通过使用约束采样对训练图像进行预先标注得到固定脸特征;然后结合图像的纹理信息和形状特征进行面部对齐及特征提取;最后计算出测试样本与各个训练样本之间的相似度,利用稀疏表示分类器完成人脸的识别。在AR、CAS-PEAL及扩展YaleB人脸数据库上的实验验证了算法的有效性及鲁棒性。实验结果表明,约束采样和面部对齐的组合大大提高了人脸识别率,相比几种较为先进的鲁棒人脸识别算法,该算法取得了更