论文部分内容阅读
为了实现矿井突水水源的快速准确识别,提出了主成分分析(principal component analysis,PCA)、遗传算法(genetic algorithm,GA)和极限学习机(extreme learning machine,ELM)相结合的突水水源判别模型。模型以ELM分类为基础,利用PCA将含水层6种水化学离子指标归纳为3种主成分,通过GA优化ELM,结合良庄煤矿51101工作面实测数据资料建立判别模型,并与传统ELM模型和BP神经网络预测模型进行对比,再实际应用到李楼煤矿1303工作面的