论文部分内容阅读
研究了基于多Hammerstein模型的非线性预测控制问题,提出了基于多模型融合的非线性预测控制方法,根据实际对象不同的工作点建立了非线性系统的多Hammerstein模型表示,以此模型集合作为实际对象的预测模型,兼顾预测控制处理各类约束的优点,以计算量较小的自适应粒子群算法(APSO)作为预测控制的滚动优化方法计算最优控制序列,避免了传统粒子群算法易早熟和算法后期粒子易在全局最优解附近“振荡”的缺点,并给出相应的模型切换策略,pH中和反应的仿真结果说明了此方法的有效性,同时也为非线性预测控制提供了一种新