基因组数据隐私保护理论与方法综述

来源 :计算机学报 | 被引量 : 0次 | 上传用户:woyaoguo_sanji
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
基因组数据已广泛应用于科学研究、医疗服务、法律与取证和直接面向消费者服务.基因组数据不但可以唯一标识个体,而且与遗传、健康、表型和血缘关系密切关联.此外,基因组数据具有不随时间而变化的稳定性.因此,基因组数据管理不当和滥用将会带来人类所担心的隐私泄露问题.针对此问题,除了相关法律法规的监管以外,隐私保护技术也被用于实现基因组数据的隐私保护.为此,本论文对基因组数据的隐私保护理论与方法进行综述研究.首先,本论文根据基因组测序到应用归纳基因组数据的生态系统,并依据基因组数据特点分析其存在的隐私泄露问题.其次,
其他文献
作为海量数据快速存储和高效处理强有力的后盾,数据中心成为近年来学术界和工业界关注的热点.传统TCP难以在高吞吐、低时延、无损等方面同时满足当前数据中心传输需求,新的传输技术研究迫在眉睫.本文在对比传统TCP设计目标和数据中心网络中传输目标的基础上,对数据中心流量控制的研究现状展开综述.流量控制是指控制流量的发送速度以及发送规则,本文从基于端到端设计的拥塞控制和基于全局优化的流量工程两个方面对流量控制技术进行介绍,并从控制机制、扩展性、技术可行性等方面对上述技术进行了对比分析.最后本文对数据中心流量控制技术
聚焦移动社交网络特征和用户隐私保护的多元需求,本文首次提出一种支持K-近邻搜索的移动社交网络隐私保护方案.方案首先构建融合细粒度访问控制的位置隐私安全模型,在此模型下设计面向移动终端的轻量级位置加密算法,并基于同态加密机制以及安全多方计算思想设计位置密文重加密协议以及K-近邻搜索协议,从而构建安全可信的协同搜索架构,保证服务提供商在无需解密位置的前提下,对用户与好友之间距离进行安全计算并排序,在保护用户位置隐私的同时满足其近邻搜索服务的可用性;除此之外,为了满足细粒度访问控制,方案提出基于公钥广播加密的好