论文部分内容阅读
由于受到温度、磁场等外界因素的干扰,汽车传感器的测量精度降低,致使汽车的整体性能下降。为此,以对温度干扰最敏感的CYJ-101型压力传感器为例,采用18组样本数据对建好的3层前馈BP神经网络进行温度补偿训练。仿真结果表明,温度对压力传感器的干扰波动由补偿前的22%减小到补偿后的2.2%。BP神经网络技术的应用极大地提高了压力传感器的测量精度,并最终改进了汽车的整体性能。作为一种分析、处理温度补偿问题的新技术,它与传统方法相比具有无可比拟的优势。