论文部分内容阅读
对运动想象脑电特征进行准确提取和分类是脑-机接口技术研究的重要问题。针对脑电信号非平稳性和非线性特点,提出了一种将小波包熵(WPE)和支持向量机(SVM)相结合的脑电信号识别方法,利用小波包系数能量分布分析脑电时频特性,结合信息熵分析其不确定性和复杂性,并从单次实验中提取运动想象脑电特征;通过支持向量机对特征信号进行分类,采用了一种核函数参数v和误差惩罚因子c的最佳寻优方法,并用互信息(MI)、信噪比(SNR)、最小错分率(MR)等准则对分类器进行评判。测试结果为:想象左右手运动脑电信号识别精度达到90%