【摘 要】
:
三维泡沫镍(Ni)基石墨烯(graphene)结构具有理想的自支撑特性,但却受制于有限的容量。以三维Ni基graphene为催化基底,通过一步水热法,在三维Ni基graphene骨架上形成二氧化锰/石墨烯/泡沫镍(MnO2/graphene/Ni)的异质结电极。MnO2的形貌随着水热反应温度的增加而呈现出纳米花状、纳米花与纳米棒的混合结构以及纳米棒状。通过循环伏安、恒电流充放电等研究方法,发现具有
【机 构】
:
信阳师范学院物理电子工程学院河南省微电能源重点实验室
【基金项目】
:
国家自然科学基金项目(11874317); 河南省高等学校青年骨干教师培训计划项目(2018GGJS097); 信阳师范学院“南湖学者奖励计划”青年项目资助;
论文部分内容阅读
三维泡沫镍(Ni)基石墨烯(graphene)结构具有理想的自支撑特性,但却受制于有限的容量。以三维Ni基graphene为催化基底,通过一步水热法,在三维Ni基graphene骨架上形成二氧化锰/石墨烯/泡沫镍(MnO2/graphene/Ni)的异质结电极。MnO2的形貌随着水热反应温度的增加而呈现出纳米花状、纳米花与纳米棒的混合结构以及纳米棒状。通过循环伏安、恒电流充放电等研究方法,发现具有纳米花状与纳米棒状混合结构的MnO2/graphene/Ni异质结电极,在电流密度为0.1 A·g-1时达到最大比电容193 F·g-1,并且,在电流密度为1 A·g-1时,经过1 000次恒电流充放电后,依然保持104%的初始容量,是一种潜在的电化学性能稳定的超级电容器电极材料。
其他文献
GaN基近紫外发光二极管(Light Emitting Diode,LED)具有体积小、功耗低、寿命长、无毒无害等诸多方面的优点,可广泛应用于生物医疗、固化、杀菌消毒、防伪检测等领域,因此受到人们的广泛关注。为了大力推动近紫外LED的市场化,“低成本、大功率”是重要的发展方向。目前,Si衬底由于具有热导率高、成本低、大尺寸易于获得等优点,被认为是发展下一代“低成本、大功率”LED的最有潜力的衬底之
飞行员状态监测一直都是航空界一个重要的问题。出于安全性考虑,很多航空公司对工作时间都有严格的规定,限制白天和夜间的最大飞行时间,避免飞行员陷入疲劳状态。飞行员状态的监测有很多方法,一般情况下,可以通过主观和客观评价方法对飞行员的大脑疲劳情况进行评估,主观评价可以使用主观疲劳自评量表(SSMOF)进行,客观评价法包括心理学、生理学和生化指标评价法。其中,生理学指标主要指一些电生理指标,
外加电流阴极保护技术(Impressed Current Cathodic Protection,ICCP)是对氯盐污染的钢筋混凝土提供防护和修复的有效方法,可以提高钢筋混凝土结构的耐久性和服役寿命。外部阳极砂浆是外加电流阴极保护系统的重要组成部分,承担着将保护电流均匀传递至钢筋混凝土结构中不同钢筋的重要功能,其性能对保障阴极保护效果具有重要作用。在外加电流阴极保护运行过程中所发生的阳极反应会对外
与无机半导体相比,有机半导体具有材料来源广、质量轻、光谱可调、可大面积制备和柔性可弯曲等优点,有机光电探测器有望成为下一代商业化的光电探测器件。为了满足微弱光的探测需求,需要开发高效率有机光电探测器,倍增型有机光电探测器具有巨大的发展潜力。然而,目前对倍增型有机光电探测器的研究还不够深入,器件性能亟待提高,工作机制有待进一步探讨。本论文以倍增型有机光电探测器为研究对象,从材料选择和器件结构设计出发
传统有机发光材料大都具有大共轭芳香结构,其在稀溶液或单分子状态下发光很强,而在高浓度溶液中或在聚集(纳米粒子、胶束、固体薄膜或粉末)状态下发光变弱甚至完全消失,故被称之为“聚集导致发光猝灭”(Aggregation-caused quenching,ACQ)效应。在柔性显示应用及水系环境为主的生物应用中发光材料主要以聚集态形式存在,因此,克服ACQ效应就显得十分的迫切。聚集诱导发光(Aggrega
在铝加工工业中,诸如模具铸造、半固态成形及热浸镀铝生产过程中,相应的与铝液接触的零部件(如模具、喷嘴、坩埚等)遭受铝液的熔蚀,动态熔蚀-冲蚀甚至是熔蚀-磨损,这将使得零部件的使用寿命缩短甚至失效。此外,熔蚀部件持续恶化是不可预知和控制的,因此会产生大量的维护及替换成本。所以,亟需制备出耐铝液熔蚀-磨损性能优异的铸钢。本文主要针对钢在铝液中熔蚀及熔蚀-磨损问题,研究了Cr、B、Mo、Ti元素合金化调
表面光滑磨削依赖于金刚石磨粒的出刃等齐性,但是,砂轮表面分布的微磨粒出刃形貌不规则且无法被在线识别,难以在过程中控制加工质量。因此,提出金刚石砂轮的电火花接触放电(ECD,Electro-Contact Discharge)修平修齐方法,即在微磨粒出刃高度间产生脉冲放电,由扬起切屑将放电热传递至磨粒切削界面,使金刚石磨粒刃端石墨化,达到机械热化学修平修齐,并控制脉冲放电能量,实现金属材料表面光滑磨
征,在照明和显示领域具有广泛的应用。然而,由于Mn2+离子的跃迁来自于自旋和宇称禁戒的4T1→6A1跃迁,发光效率通常较低,这在一定程度上限制了其应用。提高掺杂浓度有望增强发光效率,但是Mn2+过高浓度掺杂不仅会导致浓度猝灭,最近的研究表明在某些体系中还会产生额外的近红外发光。由于Mn2+离子吸收的能量被转换为不可视的近红外发光,导致其可见发光的效率将显著降低。对Mn2+离子近红外发光的探索与研究
随着能源和环境问题的日益凸显,具有节油、抗湿滑和高耐磨特征的绿色轮胎越来越受到广泛关注。作为绿色轮胎的主要增强填料,白炭黑需要通过硅烷偶联剂,如双-[3-(三乙氧基硅基)丙基]四硫化物(TESPT)实施原位改性,提高白炭黑在橡胶基体中的分散和增强白炭黑与橡胶基体之间的界面相互作用,才可以有效平衡优化轮胎“魔三角”性能(滚动阻力降低、抗湿滑性能提高以及耐磨性能提高三者之间的矛盾)。然而,目前硅烷偶联
稀土离子上转换发光具有发射谱尖锐、反斯托克斯位移大和光化学稳定性好等特点,已经成为当今很多领域以及交叉学科领域的研究热点,在超分辨纳米成像、信息安全和加密、温度传感、生物标记与诊疗等领域具有广阔的应用前景。近年来多层核壳结构设计的上转换纳米材料体系由于具有调控稀土元素空间分布、设计能量传递过程、调节稀土发光以及改善材料理化特性等优势,已经成为研究稀土上转换发光的重要基质载体。目前已经有很多研究报道