基于ADXL202的计步器

来源 :电子世界 | 被引量 : 0次 | 上传用户:feifeifo123
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  随着社会的发展,人们越来越注重自己的健康,跑步成为一种方便而又有效的锻炼方式。但是如何知道自己跑了多少步,多远的路程?计步器可以帮助人们实时掌握锻炼情况。它的主要功能是检测步数,通过步数和步幅可计算行走的路程。步幅信息可通过行走固定的距离如20m来计算或是直接输入,高级的计步器还可以计算人体消耗的热量。但这些计算的主要依据是步数的检测。下面介绍一种加速度传感器ADXL202在步数检测中的应用。
  
  计步器原理
  
  要实现检测步数首先要对人走路的姿态有一定了解。行走时,脚、腿、腰部,手臂都在运动,它们的运动都会产生相应的加速度,并且会在某点有一个峰值。从脚的加速度来检测步数是最准确的,但是考虑到携带的方便,我们选择利用腰部的运动来检测步数。如图1所示,行走时腰部有上下的垂直运动,每步开始时会有一个比较大的加速度,利用对加速度的峰值检测可以得到行走的步数。
  


  


  图2是将计步器佩戴在腰间采集到的垂直加速度曲线图,从图上可以清楚地看出有四个峰值,代表行走了四步,说明利用腰部的垂直加速度来检测步数是可行的。
  根据资料显示,人行走的垂直加速度在±1g之间(1g为9.8m/s即重力加速度),考虑到还有重力加速度的影响,可选择测量范围在±2g之间的加速度传感器ADXL202来实现计步器。ADXL202是美国AD公司的一种低功耗、二维加速度传感器,输出如图3所示占空比(T1/T2)与加速度成一定比例的数字信号,因此信号可以直接用单片机的计数器来测量,无需AD转换电路或是其它特殊电路。
  


  硬件设计
  
  计步器的整机原理框图如图4所示,ADXL202采集加速度信息并将数据送到单片机进行处理;单片机控制整个系统的工作并从数据中检测出步数送到LCD进行显示;外部控制按键进行开关机控制以及功能选择等。
  本文不对电源转换、LCD显示等电路做详细介绍,重点介绍ADXL202芯片的电路设计。ADXL202可以输出X、Y两路信号,由于我们只测量垂直方向上的加速度,只用一路信号即可,需要注意的是,设计PCB时要摆放好芯片位置,保证使用时此路与水平面垂直。从图5可以看出ADXL202的电路设计并不复杂,在使用时我们要得到有用的信号需要设定它的采样频率和采样带宽。上述两个量是由电路图中的电阻Rset和电容Cx的取值所决定的。
  


  采样频率过低,不能准确反应数据的变化情况;过高则引入很多无用信息,增加了系统运算量,需要根据实际情况选择合适的采样频率。根据资料显示,人行走的频率一般在110步/分钟(1.8Hz),跑步时的频率不会超过5Hz,选择100Hz的采样频率可以比较准确地反应加速度变化。1/T2即为数据的采样频率,计算方法为T2=RSET(Ω)/125MΩ。RSET的范围可从500kΩ~2MΩ,这里我们选择RSET=1.25MΩ,采样频率为100Hz。
  滤波带宽定义为需要检测的最高频率, 由滤波电容Cx设定,带宽的设定会影响噪声的大小和分辨率。从附表中可以看出,带宽越小,噪声就越小,而分辨率会越高,减小滤波带宽对减小噪声和提高分辨率都是有利的。但是,图2的数据曲线中越尖的地方含有的高频分量就越多,滤波带宽减小,采集到的数据曲线就变光滑,峰值相应变小,这对我们进行峰值检测是不利的。因此我们折中取滤波带宽50Hz,根据公式F-3dB=1/(2π(32kΩ×C(x,y))计算,Cx选择0.10μF。
  


  设定了采样频率和滤波带宽,按芯片手册连好电路图,应该得到如图3所示的数据波形,此时T2为10ms。
  
  软件设计
  
  根据得到的X轴数据通,过软件处理可以获得我们需要的加速度信息。
  加速度的计算公式如下:
  


  一般情况下0g(即加速度为零)时的占空比为50%,1g时的占空比为12.5%,则A(g)=(T1/T2-0.5)/0.125。
  从芯片手册上可以看出0g时的占空比芯片个体差异很大,从25%~75% 都有可能,要准确地计算加速度必须对0g和1g时的占空比进行校准。另外,计算加速度需要进行两次除法运算。以上两个因素使加速度的获取需要经过复杂的计算,考虑到我们的最终目的是检测加速度的峰值个数,而对加速度的具体值究竟是多少并不关心,T1完全可以反应加速度的变化趋势,因此选择对T1进行测量和检测峰值即可得到我们所需的步数。
  


  T1的测量可利用单片机的中断和计数器来实现。如图3所示,在上升沿Ta时刻开始计数,下降沿Tb时刻停止计数,读取数据并将计数器清零等待下一次上升沿再次开始计数。得到T1的数据,通过单片机进行峰值检测就可以确定步数。
  峰值的检测通过门限判断实现。判断门限的选择非常关键,选择偏高会造成漏判;而偏低会造成误判。单一门限要实现准确的判断并不是很容易,解决的方法是如图6所示选择两个门限A和B,当数据大于门限B并且接下来变化小于门限A时判为一步,这样可以有效地排除干扰影响。
  


  结 语
  
  本文介绍了利用人行走时腰部产生的加速度变化来检测步数的计步器实现方案,利用加速度传感器ADXL202设计简单,实现方便。该芯片也可以扩展到其它需要测量加速度的应用场合,具有广阔的应用前景。
其他文献
在当今社会,信息的高速发展,造成了人们对存储空间的急迫需求,大家都希望有一种可以存储大量数据,又很廉价的存储方式,这就是我这里为大家介绍的采用DV磁带+DVStreamerPRO2软件备份数据的新方式,DVStreamerPRO2是一个来自硅谷的小公司的产品,他们试图对磁带技术展开一次废物利用式的尝试。DV Streamer的总工程师在介绍自己的理念时说道:“目前摄像机使用的DV带和超八毫米磁带都
期刊
十六位单片机MCS-96X序列内部的硬件构造比八位单片机MCS-51系列复杂,使得外围接口电路也变得复杂,主要体现在片外的总线配制方面。51系列单片机的总线片内、片外均为八位,不存在配制问题。而MCS-96片内是十六位结构,片外的数据总线可以配制成十六位,构成全十六位机;也可以配制成八位,构成准十六位机。当然,后者的性能会有所下降。而片外的数据总线又可分为程序存储器(ROM或EPROM)数据总线和
期刊
最近看到好几篇关于影像采集与制作方面的文章,大部分都是采用Premiere或者Ulead MediaStudio 等来进行视频采集和编辑的,这几款软件虽然功能比较强大,但是使用起来比较复杂,对电脑配置的要求也比较高,制作过程很费时间。现在我为大家介绍另一款软件MGI VideoWave III SE(SONY等多种数码相机均附送),该软件对硬件要求较低,可轻易实现DV的采集、剪切、特技效果处理、各
期刊
ATtiny12是Atmel公司生产的AVR单片机,虽然只有8个引脚,但功能强大(管脚见图1)。用它设计一些小的智能电路,可以大大降低成本。它采用ISP方式编程,无须购买编程器,经济实用。本文介绍一个用ATtiny12制作的手机电池充电器,其电路简单、编程方便。    1. ATtiny12特点    (1) AVR RISC 结构,有90条指令,大多数为单指令周期,32 个8 位通用工作寄存器;
期刊
  
期刊
CPLD是一种复杂可编程逻辑器件,具有高集成度、高密度、高速度的特点。将原有采用中小规模集成电路(LSI)设计的电路改造为由CPLD实现,既可以提高系统的集成度,又可以提高系统的可靠性。另外,由于CPLD具有在系统编程的功能,可在不改变印刷电路板的情况下改变电路功能,这样可以为系统提供更多的冗余功能。本文介绍一种采用CPLD设计实现智能交通信号灯控制器方法,改变了原有控制器的体积较大、故障率高的缺
期刊
4.MSP430系列的内部结构概述    MSP430系列器件包含CPU、程序存储器(ROM、 OTP和Flash ROM)、数据存储器(RAM)、运行控制、外围模块、振荡器和倍频器等主要功能模块。其基本结构如图1所示。可以看出,MSP430内部包含了计算机的所有部件,是一个真正的单片机(微控制器MCU)。    CPU CPU 由一个16位的ALU、16个寄存器和一套指令控制逻辑组成,其逻
期刊
1.什么是DV?    DV是Digital Video的缩写,译成中文就是“数字视频”的意思,它是由索尼(SONY)、松下(PANASONIC)、JVC(胜利)、夏普(SHARP)、东芝(TOSHIBA)和佳能(CANON)等多家著名家电巨擘联合制定的一种数码视频格式。然而,在绝大多数场合DV则是代表数码摄像机。    2.和模拟摄像机相比,DV有什么主要特点?    和模拟摄像机相比,DV有如
期刊
光电耦合器(以下简称光耦)是一种发光器件和光敏器件组成的光电器件。它能实现电—光—电信号的变换,并且输入信号与输出信号是隔离的。目前极大多数的光耦输入部分采用砷化镓红外发光二极管,输出部分采用硅光电二极管、硅光电三极管及光触发可控硅。这是因为峰值波长900~940nm的砷化镓红外发光二极管能与硅光电器件的响应峰值波长相吻合,可获得较高的信号传输效率。    光耦的结构    光耦的内部结构(剖面)
期刊
锂离子电池具有能量高、电压高、寿命长、无记忆、无污染等其它电源无法比拟的优点,在以电池供电的便携式电子产品,如手提式MD、游戏机、数字摄像机和照相机、PDA等都采用锂离子电池作为工作电源,特别在移动电话和笔记本电脑领域中,锂离子电池更是占绝对优势。但是,锂离子电池必须有过充电、过放电和过电流保护电路,否则极易被损坏,甚至还会危及主机。可是,目前国内还没有企业掌握锂离子电池保护电路的核心技术,大部分
期刊