论文部分内容阅读
针对长时间序列电力负荷的预测精度低的问题,应用了基于Informer长时间序列模型的电力负荷预测方法.该方法通过Informer模型中的自注意力蒸馏机制,使得每层的解码器都将输入序列的长度缩短一半,从而极大地节约了Encoder内存开销,并在编码器结构中使用生成式结构,使得预测解码时间极大的缩短;以澳大利亚的电力负荷数据作为测试用例,并与长短时记忆神经网络(long-short term memory,LSTM)和卷积神经网络(convolutional neural network,CNN)模型方法进行