面向大数据应用的众核处理器缓存结构设计

来源 :计算机工程与科学 | 被引量 : 0次 | 上传用户:hualing_xue
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
大规模数据排序、搜索引擎、流媒体等大数据应用在面向延迟的多核/众核处理器上运行时资源利用率低下,一级缓存命中率高,二级/三级缓存命中率低,LLC容量的增加对IPC的提升并不明显.针对缓存资源利用率低的问题,分析了大数据应用的访存行为特点,提出了针对大数据应用的两种众核处理器缓存结构设计方案,两种结构均只有一级缓存,Share结构为完全共享缓存,Partition结构为部分共享缓存.评估结果表明,两种方案在访存延迟增加不多的前提下能大幅节省芯片面积,其中缓存容量较低时,Partition结构优于Share结
其他文献
随着全球变暖的加剧,低能耗、低污染、低排放的低碳型经济模式已成为世界各国的焦点,而绿色经济、低碳经济也是今后的主流方向。在这个大背景下,如何发展低碳型教育是我国新世纪