论文部分内容阅读
针对回转支承故障特征微弱以及难以提取的特点,提出一种基于概率主成分分析(probabilistic principal component analysis,PPCA)的多领域特征提取方法。该方法从振动信号的时域和时频域中提取出多个能够表征回转支承运行状态的特征向量,并将其组成高维特征集。采用PPCA从高维特征集中提取出最能够反映回转支承寿命状态信息的特征量,将其输入粒子群算法优化的支持向量机中进行寿命状态的识别。通过回转支承全寿命实验证明,基于PPCA的特征提取方法优于传统的主成分分析(principa