论文部分内容阅读
车辆型号精细识别在智能交通系统、涉车刑侦案件侦破等方面具有十分重要的应用前景。针对车辆型号种类繁多、部分型号区分度小等带来的车辆型号精细分类困难的问题,提出一种基于胶囊神经网络(capsule network, CapsNet)的车型图像识别模型CapCar。以CompCars数据集作为样本,首先通过加权平均值法进行图像的灰度化处理,减少数据集训练计算量,提高模型的训练速度。然后通过胶囊神经网络提取车型图像的全部特征和局部特征,实现车型分类识别。相较于现有的车型精细识别方法,该方法在提高识别精度的同