论文部分内容阅读
集成电路(ICs)面临着硬件木马(HTs)造成的严峻威胁。传统的旁路检测手段中黄金模型不易获得,且隐秘的木马可以利用固硬件联合操作将恶意行为隐藏在常规的芯片运行中,更难以检测。针对这种情况,该文提出利用机器学习支持向量机(SVM)算法从系统操作层次对旁路分析检测方法进行改进。使用现场可编程门阵列(FPGA)验证的实验结果表明,存在黄金模型时,有监督SVM可得到86.8%的训练及测试综合的平均检测准确率,进一步采用分组和归一化去离群点方法可将检测率提升4%。若黄金模型无法获得,则可使用半监督SVM方法