超临界抗溶剂法制备金属氧化物纳米颗粒的研究进展

来源 :材料导报 | 被引量 : 0次 | 上传用户:candysan
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
具有纳米尺寸的金属氧化物因其优异的催化性能而在电化学、生物医学和其他科学领域备受瞩目.目前,制备金属氧化物纳米颗粒的传统方法主要有水热法、溶剂热法、沉淀法、微乳液法、溶胶凝胶法和模板法等.然而,这些方法往往因成本偏高、存在有机溶剂残留等问题而限制了其进一步发展.为此,迫切需要开发一种制备金属氧化物纳米颗粒的新型技术来弥补传统方法的不足,促进金属氧化物纳米颗粒制备技术的发展.超临界流体是温度和压力处在物质的临界温度和临界压力之上的一种处于特殊状态的流体,其兼具气体和液体的某些性质,具有独特的溶剂化特征、近乎于零的表面张力、低粘度、易调变,具有接近液体的密度与溶解度和类似气体的扩散性质.近年来,超临界流体技术由于其温和的操作条件和独特的性质而广泛应用于化工、环境、制药等领域.其中,超临界抗溶剂法造粒因具有操作条件温和、制备颗粒大小可控、颗粒无有机溶剂残留等优点而备受瞩目.金属氧化物纳米颗粒因其本身的尺寸效应,在催化、传感、生物医学等领域具有较为良好的应用前景.本文介绍了超临界抗溶剂法制备金属氧化物纳米颗粒的基本原理、制备流程及应用,并着重探讨了不同温度、压力和溶液浓度对超临界抗溶剂法制备金属纳米颗粒粒径大小以及形貌的影响,最后对该方法面临的问题和挑战以及发展前景进行了展望.
其他文献
本文在综述我国生物材料科学与产业发展现状的基础上,简要分析了我国生物材料产业创新发展的路径探索以及中国生物材料学会助力我国生物材料科学与产业发展的举措,包括发挥学会学术引领作用、承接政府职能转移、建立产业创新服务中心等,旨在为服务生物材料及医疗器械创新发展提供参考.
组合混凝土叠合构件通过在预制陶粒混凝土部件上现浇普通混凝土而制成,兼具预制结构的施工方便和工期较短、现浇结构的整体性能和抗震性能良好等优点;同时,可充分发挥两种不同混凝土材料各自的性能优势.为分析叠合浇筑间隔时间、混凝土强度等级匹配、浇筑结合面处理方式、钢纤维掺入及附加法向约束力等因素对组合混凝土叠合界面粘结性能的显著影响,本工作设计制作了40组双面直剪组合混凝土试块进行正交试验分析.试验结果表明:附加法向约束力的施加对叠合界面粘结剪切强度的影响高度显著,法向力的增加可明显提高粘结剪切强度;次之,影响程度
以高压电瓷废料为原料,通过气流超细粉碎、圆盘造粒,经1180~1260℃烧结制备油气开采水力压裂用陶粒支撑剂.通过X射线衍射(XRD)和扫描电子显微镜(SEM)对不同烧结温度陶粒支撑剂试样的物相组成和微观形貌进行分析,通过石油天然气行业标准中的方法测试试样的密度、破碎率及酸溶解度,研究烧结温度对试样微观结构和性能的影响.结果表明,支撑剂主要物相为莫来石和刚玉,随着烧结温度的升高,针状莫来石晶粒逐渐长大,并互相交错堆叠形成网格状结构,液相均匀分散并包裹于晶粒,使试样致密化程度提高.但烧结温度过高会导致试样内
当今,化石能源短缺和环境污染问题日益严峻,影响了人们的日常生活以及工业生产.世界各国都在寻找能够绿色高效地利用能源的新技术途径.在众多新技术途径中,热电转换技术因具有可以直接把热能转换成电能、不产生气体排放、不需要预先生产热能、仅靠工业生产和日常生活的废热即可发电等特点,受到工业界和学术界越来越广泛的关注.目前已经在深空探测、能源回收、空调制冷、芯片冷却等方面得到应用.半导体GeTe材料,是一种非常有前景的中温热电材料.在GeTe合成中,一般Ge不能完全参与反应而产生Ge空位,一个Ge空位会产生两个空穴,
由于粉煤灰的非均质性,很难直接预测粉煤灰的活性.本实验研究了不同粉煤灰在不同时间、温度和碱浓度条件下的浸出过程(先将粉煤灰在碱液中溶解,再将其残留物在酸溶液中解离).通过电感耦合等离子体发射光谱仪(ICP)和化学分析表明,温度、反应时间和碱浓度都会影响粉煤灰的溶解速率和浸出含量.粉煤灰中浸出的反应性n(Si)/n(Al)为2.3~2.7,粉煤灰中硅和铝的总浸出量与成型用其制备的地聚合物强度呈正相关.另外,可发现建立在硅酸盐水泥体系上的粉煤灰活性评价体系并不完全适用于地聚合物体系.通过XRD、FTIR和SE
为探究钢筋高延性混凝土(RHDC)梁裂缝开展机理,共设计四根钢筋高延性混凝土梁和一根普通钢筋混凝土(RC)梁,通过四点弯曲试验研究高延性混凝土极限拉应变和配筋率对构件裂缝宽度、裂缝间距以及裂缝发展高度的影响.研究表明:(1)与RC梁相比,RHDC梁的裂缝数量多且宽度小,加载过程中裂缝发展缓慢;(2)RHDC梁的裂缝宽度和裂缝高度随材料极限拉应变的增大而减小;(3)配筋率对RHDC梁裂缝宽度的影响与对RC梁的影响规律相同,随配筋率增大,RHDC梁裂缝宽度、裂缝高度以及平均裂缝间距均减小.基于试验和相关文献,
磷酸镁水泥(MPC)作为一种新型无机胶凝材料,具有早期强度高、干缩小、耐久性好等优良性能,在土木结构工程的快速修补和危废快速固化处理等领域有着极大优势.但磷酸镁水泥因强烈的放热反应,凝结速度过快,可施工操作性较低,所以其缓凝技术研究成为了该类材料规模化应用需解决的关键技术之一.缓凝剂的添加,可有效延缓磷酸镁水泥的凝结速度,改善其可施工操作性.本文基于国内外磷酸镁水泥缓凝剂研究,综述了几种常用的缓凝剂(硼砂(B)、硼酸(BA)和三聚磷酸钠(STP))对磷酸镁水泥性能(水化热、抗压强度、凝结特性)及其水化机制
以十六烷基三甲基溴化铵(CTAB)为模板剂,水热法制备介孔SnO2载体,以Adams法制备40%lrO2(质量分数)负载型催化剂,采用BET、XPS、XRD、TEM等手段对载体及催化剂结构与性能进行表征与分析;然后用Sb、Co掺杂SnO2载体并合成催化剂,探究其对载体及催化剂结构与性能的影响.结果表明:当水热反应时间为24 h时,获得的载体最有利于催化剂负载,并获得最优性能.掺杂有效改善了SnO2质子传递,当Sb掺杂SnO2时,其催化剂电化学循环性能不断增高,Sb掺杂量为20%(摩尔分数,下同)时,催化剂
Si3N4陶瓷具有高硬度、高耐磨以及高抗弯强度等优异特性,常常被应用于冶金、化工以及航空航天等现代化领域.Si3 N4的强共价键使其难以致密化,因此热压烧结和气压烧结是目前制备致密Si3 N4陶瓷最常见的方法.然而极高的烧结温度以及较大的N2压力需求等极其苛刻的制备条件限制了致密Si3 N4陶瓷的基础探索研究和工业化生产应用.因此,本工作提出设计以传统空气电炉作为烧结装置,通过埋碳低温制备致密Si3 N4陶瓷,研究该工艺条件下实验用坩埚、填埋Si3 N4粉体以及烧结试样的物相变化和微观结构,结果表明:(1
超材料因其结构可设计性和优异的物理性能成为近年来的研究热点.热学超材料因能针对性设计红外发射率和反射率等热性能而备受关注.近年来热学超材料朝着“智能化”和“多功能”的趋势发展,智能热调控超材料是实现高效热控的重要途径.以相变涂层为主的传统智能热控材料具有精度低、调控幅度小和可设计性差等局限性.超结构设计能使材料实现理想的电磁特性,并通过表面等离激元等不同的损耗机制实现特定波段的完美吸收.在此基础上,引入相变材料或可重构表面实现的智能热控超材料能够快速、精准地实现热性能的大幅调控.智能热控超材料可实现热场、