论文部分内容阅读
仿射传播聚类是一种快速有效的聚类方法。但对高维数据进行聚类时,由于数据信息的重叠,聚类结果往往会有较大误差。针对这个问题,提出了把主元分析(PCA)和仿射传播(AP)聚类相结合的PCA-AP算法,在保留原变量绝大部分信息的情况下对数据进行降维处理,然后在低维空间中用仿射传播聚类的方法进行聚类。由于剔除了冗余信息,算法得到的分类结果更加准确。实验结果表明该算法是有效的。