论文部分内容阅读
由于缺少实例级标签,使得深度神经网络在工业表面检测领域的应用受到了限制.为解决这一问题,本文面向实际的热轧钢板表面缺陷检测任务,提出基于弱监督学习的缺陷检测网络,该网络引入类激活映射模型,使用容易获取的图像级标签进行模型训练,进行钢板表面的缺陷检测.为了进一步提升检测精度和克服类激活映射模型原有的缺点,本文采用性能更优的残差网络作为主干网络进行特征提取,并提出了多层级特征融合网络进行类激活图的生成,来获取更多的细节信息和更准确的目标激活区域.通过在公开缺陷数据集NEU-CLS上进行实验,结果表明本文