论文部分内容阅读
摘要:本文将就目前电力系统当中的检修方法进行总结,从而对变电一次设备状态的检修工作进行观察,并从状态检测、状态预测以及故障诊断三个方面进行论述。
关键词:电力系统;变电设备;状态检测;状态预测
引言
与传统电力系统所采用的定期检修差别较大,电力系统的变电一次设备状态检修是利用传感器技术、诊断技术等对变电一次设备的运行过程进行数据搜集,从而帮助工作人员对变电一次设备的运行状态进行分析。与传统定期检修相比,状态检修对于故障的判断和预估更加及时,也更加准确,从而对于电力系统运行稳定性的提高也更加明显。在现阶段,电力系统通常采用定期检修和状态检修同步的检修方式进行检修作业。
1电力系统变电一次设备状态检修的检修步骤
在现阶段,电力系统的工作人员在进行检修作业时,通常采用定期检修和状态检修两种检修方式并行的方式对电力系统当中的设备状态进行判断。对于电力系统的检修来说,变电一次设备十分重要,因此在状态检修作业中,工作人员需要严格按照变电一次设备的状态检修步骤来进行检修,并生成检修记录和检修报告,从而规划检修计划,并依据报告对设备状态做出判断。
在检修中,第一步需要明确变电一次设备的模型参数,参数是设备运行的主要对照数据,工作人员为了对设备状态进行判断,通常会采用泊松模型的方式完成对可靠性约束的模拟,从而提高分析效率,确定设备参数;第二步需要工作人员通过传感器等设备对变电设备运行过程中所产生的实时信息进行采集,其中包括设备特征值、历史检修记录、运行参数、预防实验等重要数据[1];第三步,工作人员需要将己经完成搜集的设备信息进行整理,再将数据与正常数据进行对比,从而发现设备存在哪些故障或哪种类型的故障隐患。一旦发现存有故障或故障隐患则需要进行第四步;第四步,工作人员将故障信息输入到设备的检修模型当中,利用模型当中的仿真计算来对设备运行进行模拟,通过模拟结果得出设备的最优检修时间;第五步,针对设备可能存在的故障,选择最优检修时间对其进行检修,避免设备遭受到严重的故障影响。
2电力系统变电一次设备状态检修的检修策略
2.1变电一次设备的状态检测
在目前的技术条件之下,变电一次设备在电力系统工作当中的检测方法可以分为三种形式,分别为在线监测、离线监测和定期解体检测。其中,在线监测是通过传感器与信息搜集系统相互连接的方式,运用实时的数据传输,使传感器所检测到的变电一次设备的运行状态可以以数据的形式反应在系统显示界面当中,工作人员通过对界面当中所显示的数据进行读取,从而判断变电一次设备的实时运行情况;离线监测与在线监测不同,这种监测方式需要借助红外测温仪、振动监测仪等设备对变电一次设备进行定期或不定期的数据搜集,数据搜集仪器会将所搜集到的状态数据根据搜集实践和状态情况进行分类存储,工作人员通过调取历史监测数据的方式获取到离线数据,再对设备状态进行判断,这种方法更利于工作人员宏观上对设备状态变化进行把握;第三种定期解体检测,这种检测手法是按照规定时间由工作人员参与,对变电一次设备进行拆解,从而完成相对全面的检测方式,但是在目前的技术环境之下,这种检测方式的作业复杂度高,对于人工作业水准的要求也更加细致,同时还需要工作人员完全掌握拆检设备的相关信息,在现阶段己经很少采用。
2.2变电一次设备的状态预测
变电一次设备的状态检修过程中,状态预测是工作人员对故障进行判断的重要步骤,通常依靠检测数据来完成。在现阶段,电力系统的工作人员通常会采用预测模型的方式,对数据内容进行仿真模拟,从而得出相对客观真实的状态预测判断结果。常见的预测模型有BP神经网络模型和灰色系统状态模型两种,其中,BP神经网络模型通过网络层级的方式,将输入层、隐含层和输出层构成一个完成的逻辑网络,运用节点的方式,对可能发生的情况进行模拟分析,最终得到对于变电一次设备状态的仿真模拟结果。例如在现阶段变电一次设备检测过程中所采用的智能调试装置就能够借助智能终端进行检修机制的处理。在某220KV变电站当中,工作人员运用变电站自动化系统对间隔线路的三相跳闸出口回路进行状态预测,并生成了自动化的检测报告。报告中显示A相、B相、C相跳闸出口回路正常,重合闸动作出口正常,可以认定该线路未存在故障因素;与之相对的灰色系统状态模型则是依据设备状态的特征向量来进行模拟,并通过与预先设定的预警阈值进行比较,从而判断其现阶段状态和未来可能发生的状态[2]。在短期预测中,灰色系统状态模型更加具有效果。例如变电一次设备当中的轴承在使用年限过长之后容易发生磨损,影响运行质量,而在灰色系统状态模型当中,其磨损特点可以通过浴盆曲线来进行分析,并在输入磨损数值之后,根据浴盆曲线状态计算,从而计算出下一阶段的磨损特点,提升检测效果。
2.3变电一次设备的故障诊断
故障诊断则是工作人员通过对变电一次设备的状态监测,所测试工具与解决方案离,断开母线连接、PT二次侧开关以及失压开关,将母线PT二次并列,然后送电,最终对PT进行检修。母线PT故障还包括高压熔断丝断裂,对此事故的解决方式为,首先对一次熔丝进行检查,如若发现其己经熔断,则可以将PT停电,采用先低压,后高压的方式,在检修过程中应做好安全保障措施,即将地刀闭合、戴好护目镜以及手套等,将PT隔离后,母线PT二次侧并列,最终对PT进行检修。当母线PT发生二次熔丝断裂时,可以采用重合或者更换的方式,如若没有成功,则无需实施其他操作,直接进行检修处理。在对母线PT进行断线处理的过程中,如若尚未发现明显的故障现象,则可以将PT二次空开,将熔丝取下后,利用万用表对其顶端的电压值进行测量。如果电压的数值属于正常范围,则本体断线,按照上述熔丝断裂的方式处理;如果电压的数值异常,二次断线,则无需进行处理。进行的故障分析和故障判别的方式。在故障诊断技术当中,较为常见的诊断方式有振动诊断、污染诊断、射线诊断、噪声诊断和专家系统诊断等,在日常使用过程中,最广为工作人员所熟知的诊断方式为振动诊断。在振动诊断过程中,工作人员运用振动相关仪器对设备运行过程中的位移、速度、频谱、相位、幅值等振东信息进行搜集,再借助标准值进行对比,从而判断出设备的健康状况。通常来讲,变电一次设备的故障诊断中,振动诊断方式的准确率能够达到65%以上,具有应用价值。
3结论
作为现阶段最常采用的检测技术,状态监测对于电力系统当中变电一次设备而言具有非比寻常的意义。工作人员通过设备运行状态的搜集,可以更加直观清楚地对设备健康状态进行判断,从而保護设备的运行能力,提升运行质量。
参考文献:
[1]杨文惠,高宇霞.变电一次设备故障预测及检修方法探讨[J].科技创新与应用,2016,(12):181.
[2]李毅.变电一次设备检修及其安全运行管理[J].中国高新技术业,2015,(34):72-73.
关键词:电力系统;变电设备;状态检测;状态预测
引言
与传统电力系统所采用的定期检修差别较大,电力系统的变电一次设备状态检修是利用传感器技术、诊断技术等对变电一次设备的运行过程进行数据搜集,从而帮助工作人员对变电一次设备的运行状态进行分析。与传统定期检修相比,状态检修对于故障的判断和预估更加及时,也更加准确,从而对于电力系统运行稳定性的提高也更加明显。在现阶段,电力系统通常采用定期检修和状态检修同步的检修方式进行检修作业。
1电力系统变电一次设备状态检修的检修步骤
在现阶段,电力系统的工作人员在进行检修作业时,通常采用定期检修和状态检修两种检修方式并行的方式对电力系统当中的设备状态进行判断。对于电力系统的检修来说,变电一次设备十分重要,因此在状态检修作业中,工作人员需要严格按照变电一次设备的状态检修步骤来进行检修,并生成检修记录和检修报告,从而规划检修计划,并依据报告对设备状态做出判断。
在检修中,第一步需要明确变电一次设备的模型参数,参数是设备运行的主要对照数据,工作人员为了对设备状态进行判断,通常会采用泊松模型的方式完成对可靠性约束的模拟,从而提高分析效率,确定设备参数;第二步需要工作人员通过传感器等设备对变电设备运行过程中所产生的实时信息进行采集,其中包括设备特征值、历史检修记录、运行参数、预防实验等重要数据[1];第三步,工作人员需要将己经完成搜集的设备信息进行整理,再将数据与正常数据进行对比,从而发现设备存在哪些故障或哪种类型的故障隐患。一旦发现存有故障或故障隐患则需要进行第四步;第四步,工作人员将故障信息输入到设备的检修模型当中,利用模型当中的仿真计算来对设备运行进行模拟,通过模拟结果得出设备的最优检修时间;第五步,针对设备可能存在的故障,选择最优检修时间对其进行检修,避免设备遭受到严重的故障影响。
2电力系统变电一次设备状态检修的检修策略
2.1变电一次设备的状态检测
在目前的技术条件之下,变电一次设备在电力系统工作当中的检测方法可以分为三种形式,分别为在线监测、离线监测和定期解体检测。其中,在线监测是通过传感器与信息搜集系统相互连接的方式,运用实时的数据传输,使传感器所检测到的变电一次设备的运行状态可以以数据的形式反应在系统显示界面当中,工作人员通过对界面当中所显示的数据进行读取,从而判断变电一次设备的实时运行情况;离线监测与在线监测不同,这种监测方式需要借助红外测温仪、振动监测仪等设备对变电一次设备进行定期或不定期的数据搜集,数据搜集仪器会将所搜集到的状态数据根据搜集实践和状态情况进行分类存储,工作人员通过调取历史监测数据的方式获取到离线数据,再对设备状态进行判断,这种方法更利于工作人员宏观上对设备状态变化进行把握;第三种定期解体检测,这种检测手法是按照规定时间由工作人员参与,对变电一次设备进行拆解,从而完成相对全面的检测方式,但是在目前的技术环境之下,这种检测方式的作业复杂度高,对于人工作业水准的要求也更加细致,同时还需要工作人员完全掌握拆检设备的相关信息,在现阶段己经很少采用。
2.2变电一次设备的状态预测
变电一次设备的状态检修过程中,状态预测是工作人员对故障进行判断的重要步骤,通常依靠检测数据来完成。在现阶段,电力系统的工作人员通常会采用预测模型的方式,对数据内容进行仿真模拟,从而得出相对客观真实的状态预测判断结果。常见的预测模型有BP神经网络模型和灰色系统状态模型两种,其中,BP神经网络模型通过网络层级的方式,将输入层、隐含层和输出层构成一个完成的逻辑网络,运用节点的方式,对可能发生的情况进行模拟分析,最终得到对于变电一次设备状态的仿真模拟结果。例如在现阶段变电一次设备检测过程中所采用的智能调试装置就能够借助智能终端进行检修机制的处理。在某220KV变电站当中,工作人员运用变电站自动化系统对间隔线路的三相跳闸出口回路进行状态预测,并生成了自动化的检测报告。报告中显示A相、B相、C相跳闸出口回路正常,重合闸动作出口正常,可以认定该线路未存在故障因素;与之相对的灰色系统状态模型则是依据设备状态的特征向量来进行模拟,并通过与预先设定的预警阈值进行比较,从而判断其现阶段状态和未来可能发生的状态[2]。在短期预测中,灰色系统状态模型更加具有效果。例如变电一次设备当中的轴承在使用年限过长之后容易发生磨损,影响运行质量,而在灰色系统状态模型当中,其磨损特点可以通过浴盆曲线来进行分析,并在输入磨损数值之后,根据浴盆曲线状态计算,从而计算出下一阶段的磨损特点,提升检测效果。
2.3变电一次设备的故障诊断
故障诊断则是工作人员通过对变电一次设备的状态监测,所测试工具与解决方案离,断开母线连接、PT二次侧开关以及失压开关,将母线PT二次并列,然后送电,最终对PT进行检修。母线PT故障还包括高压熔断丝断裂,对此事故的解决方式为,首先对一次熔丝进行检查,如若发现其己经熔断,则可以将PT停电,采用先低压,后高压的方式,在检修过程中应做好安全保障措施,即将地刀闭合、戴好护目镜以及手套等,将PT隔离后,母线PT二次侧并列,最终对PT进行检修。当母线PT发生二次熔丝断裂时,可以采用重合或者更换的方式,如若没有成功,则无需实施其他操作,直接进行检修处理。在对母线PT进行断线处理的过程中,如若尚未发现明显的故障现象,则可以将PT二次空开,将熔丝取下后,利用万用表对其顶端的电压值进行测量。如果电压的数值属于正常范围,则本体断线,按照上述熔丝断裂的方式处理;如果电压的数值异常,二次断线,则无需进行处理。进行的故障分析和故障判别的方式。在故障诊断技术当中,较为常见的诊断方式有振动诊断、污染诊断、射线诊断、噪声诊断和专家系统诊断等,在日常使用过程中,最广为工作人员所熟知的诊断方式为振动诊断。在振动诊断过程中,工作人员运用振动相关仪器对设备运行过程中的位移、速度、频谱、相位、幅值等振东信息进行搜集,再借助标准值进行对比,从而判断出设备的健康状况。通常来讲,变电一次设备的故障诊断中,振动诊断方式的准确率能够达到65%以上,具有应用价值。
3结论
作为现阶段最常采用的检测技术,状态监测对于电力系统当中变电一次设备而言具有非比寻常的意义。工作人员通过设备运行状态的搜集,可以更加直观清楚地对设备健康状态进行判断,从而保護设备的运行能力,提升运行质量。
参考文献:
[1]杨文惠,高宇霞.变电一次设备故障预测及检修方法探讨[J].科技创新与应用,2016,(12):181.
[2]李毅.变电一次设备检修及其安全运行管理[J].中国高新技术业,2015,(34):72-73.