压水堆核电站燃料组件弯曲对堆芯中子学的影响分析计算

来源 :强激光与粒子束 | 被引量 : 0次 | 上传用户:qiuzhizhedetiantang
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
在压水堆核电站中,由于燃料组件装配的压紧力、冷却剂流动、辐射蠕变、燃耗等因素会导致燃料组件的弯曲,燃料组件的弯曲对组件间的水隙分布产生影响,从而影响中子的慢化行为及堆芯的传热性能,进而对反应堆堆芯的运行参数造成影响.本文分析了组件弯曲的成因及机理、影响及后果(包括对堆芯功率分布、径向功率倾斜、焓升因子、热点因子等参数的影响),并使用蒙特卡罗软件JMCT,对组件弯曲的确定论计算程序的正确性进行了验证.最后通过确定论的计算程序模块,对CPR1000核电站的组件弯曲情况进行了模拟分析,计算结果表明:在某一燃耗下,随着水隙增加或减小,燃料组件功率会随之增加或减小,使堆芯的功率分布发生倾斜,影响核电站的安全运行.
其他文献
作为CT设备的核心器件,CT球管采用动态磁聚焦技术以利于大电流输出时小焦点的实现.飞焦点技术可以多角度记录每次扫描的每个投影,提高采样率,从而大幅改善图像清晰度,提高成像质量.当CT球管为1 A大电流输出时,采用CST软件对双磁四极透镜关键参数进行模拟仿真及优化,满足焦点目标尺寸为0.2 mm×0.6 mm的同时具备飞焦点功能.
半导体泵浦亚稳态惰性原子激光是高能光泵浦气体激光领域具有潜力的新方案.已有报道均在约束的放电空间内产生亚稳态原子,功率放大受到多因素制约.为突破现有方案的局限,采用大气压等离子体射流方式在羽流区域产生高浓度亚稳态氩原子(1014 cm-3量级),将放电和激光区域空间分离,利用811 nm窄线宽半导体激光器作为泵浦源,基于泵浦、激光和气流相互垂直的结构实现912 nm激光输出,有效拓展了该型激光体系的功率定标放大能力.
粒子加速器中真空元件的阻抗是引起束流不稳定的重要原因.基于储存环的新一代同步辐射光源的设计发射度更小,相应地要求更小的真空盒孔径,进而带来阻抗的显著增加,这就要求在设计阶段对真空元件的阻抗进行准确的评估和优化.阻抗测量是验证阻抗模型准确性的重要手段,而同轴线法是常用的实验室测量方法.对小孔径真空元件同轴线法纵向阻抗测量进行了研究,针对窄带阻抗元件,使用pillbox腔开展了相关的阻抗测量,研究了不同的内导体尺寸对于测量结果的影响,同时基于尾场模拟、散射参数模拟以及本征模模拟对测量结果进行了验证,模拟和测量
强激光与等离子体之间相互作用,能够产生各种参量不稳定性过程和非线性效应.利用Karpman方法推导出横场包络所满足的非线性控制性方程,在一维情况下,获得孤波解.对孤波解进行分析,发现波包孤子的半宽反比于振幅;分析磁化等离子体中各参量对孤波半宽的影响.结果表明,在右旋圆偏振激光情况下,随着电子数密度的增大,孤波的半宽逐渐减小,而当磁场强度增大时,孤波的半宽逐渐增大;在左旋圆偏振激光情况下,随着电子数密度的增大,孤波的半宽逐渐增大,而当磁场强度增大时,孤波的半宽逐渐减小.
由于具有高品质、高效率、高鲁棒性、结构紧凑等优点,光纤激光系统在近20年飞速发展,并得到广泛应用.然而发展至今,依旧存在着一些因素(如非线性效应、热效应、模式不稳定性等)限制着光纤激光系统功率的进一步提升.作为其中的一种主要限制因素,受激拉曼散射效应不仅降低了光纤激光器的输出效率,后向斯托克斯光还会提高系统的损毁风险.最近的研究结果表明,少模光纤中受激拉曼散射在引起模式不稳定性的同时,还会导致准静态的模式退化.因此,需要发展有效的拉曼抑制手段来突破现有瓶颈,促进高功率高光束质量光纤激光发展.在介绍高功率少
基于模块化多电平换流器的高压直流输电技术迅速发展,直流侧短路故障电流的限制与开断困难等问题已然成为研究热点.故障限流技术能够快速限制短路电流的峰值与上升率,为直流断路器的快速隔离提供有利条件.在现有混合式直流断路器基础上,提出2种快速限流的技术方案:新型直流故障限制器与直流断路器配合方案、结合限流电路的混合直流断路器方案.通过限流电感实现故障初期对故障电流上升率的抑制、限流电阻和电容在故障过程中快速投入以及电感限流回路与电容放电回路引入,使得故障电流峰值降低,直流断路器中避雷器的耗能压力继而减小,最终实现
为实现给定可靠性指标,提出一种基于序列线性化关联度分析的配电网可靠性规划投资的估算方法.首先选取与可靠性紧密相关的规划业务指标,通过序列线性化关联度分析将可靠性指标的控制目标分解为各规划业务指标的提升目标,然后构建各规划业务指标对应的典型工程建设场景,并依据典型场景估算出要达到相应的业务指标提升目标所需的投资额,最后汇总得到总的可靠性规划投资额.算例表明该方法可适用于电网情况复杂和规划方案多样的实际配电网,能够为供电企业提高资金使用效率提供有力指导.
燃料棒设计验证是评价燃料棒在反应堆内运行时安全性能的过程,其中输入参数的不确定度对评价结果有非常重要的影响.为了系统研究燃料棒设计验证的不确定度,使用Dakota中蒙特卡罗与拉丁超立方的非参数抽样方法,结合燃料棒性能分析软件开展了燃料棒设计验证计算,并与传统的不确定度计算方法进行了比较.结果表明,传统方法未充分考虑输入参数的不确定度,导致内压准则在正常运行条件下容易受到挑战,统计性的抽样方法弥补了这一缺陷,获得了较大的安全裕量,为燃料棒安全性以及经济性的提升提供了理论依据;同时,2种抽样方法所获得的燃料温
为了解决风电功率预测误差对电力系统调度运行影响的问题,提出一种基于自适应移动平滑(adaptive movement smoothing,AMS)和时间卷积网络(temporal convolutional network,TCN)误差修正的风电功率预测方法.该方法首先利用变分模态分解和TCN提取风电功率的时空特性,得到初步预测结果;然后利用AMS模型对预测误差序列进行自适应平滑处理,降低误差的波动性;最后利用TCN模型提取预测误差的时间特性,对初步预测结果进行修正,提高预测的精度和稳定性.基于辽宁双子台
GJB151B CS115给出了开展脉冲传导敏感度试验的校准平台构成和校准波形标准,但未明确校准平台各设备(脉冲源、电流注入环、校准夹具等)的具体指标需求.为解决这一问题,本文在前期脉冲电流注入电路仿真研究工作的基础上,构建了校准平台的时域电路模型,通过逐一改变模型参数的方法,仿真分析了脉冲源内部回路电感、电流注入环等效电感/电阻/电容等对校准波形前沿、半宽以及平顶降的影响,得出了平台各设备应达到的技术指标.该工作是对GJB151B CS115的有益补充,为搭建CS115试验平台,开展电子设备脉冲传导敏感