论文部分内容阅读
对一个stuart-landau系统引入时滞状态反馈,研究时滞对非线性系统动力行为的影响。发现时滞可使系统出现周期振动,与无时滞系统不同之处在于有多个周期吸引子共存的现象。从理论上预测由时滞导致的动力学行为,得到周期解的解析形式。随着时滞量的变化,周期解个数及其稳定性发生变化。并通过对比周期解的数值解和解析解,数值验证多周期吸引子共存的现象。这些结果对控制系统的振动和系统同步等有着潜在的应用价值。