论文部分内容阅读
提出一种基于硬C均值算法的自适应RBF神经网络。该算法根据网络训练误差的变化,在隐层到输出层的权值修改过程中,对学习步长进行自适应调节;对通常采用的基函数宽度的计算方法作了改进;对于硬C均值算法出现的死节点,则在程序运行中自动进行删除。利用该改进的自适应RBF网络进行某合成氨装置的氢氮比预测,网络计算误差小、收敛迅速、结果令人满意,表明网络具有良好的性能。