论文部分内容阅读
滚动轴承是旋转机械中最易发生故障的元件之一,提出了一种基于小波包分析和高阶模糊BP神经网络的滚动轴承故障诊断新方法.该方法的具体诊断过程:采用小波包分解的方法提取样本信号各频段的Shannon熵值并结合其他一些量化指标,经筛选后作为特征向量输入滚动轴承故障诊断高阶模糊神经网络,对该网络进行训练与检验.实验表明这种方法与传统方法相比,在收敛速度及对训练总误差控制方面具有更大的优越性.