论文部分内容阅读
为了提高基于LSSVM的软测量模型的可信度,提出将平均拟合误差、平均预测误差与最大预测误差作为模型参数优化的3个目标,并根据两个预测误差目标之间的差值来设置模型参数选择的偏好;基于某电厂600MW超临界机组运行时采集的数据,对烟气含氧量进行的建模仿真结果表明:根据偏好选择LSSVM的正则化参数γ与核函数宽度σ可以同时兼顾模型的拟合能力与预测能力,并确保模型的最大预测误差小于一定的上限,从而能够提高模型的可信度;在此基础上,对γ与σ值变化的仿真试验进一步验证了综合考虑上述3个目标来进行模型参数优化选择