论文部分内容阅读
针对基于取心井岩心分析数据和测井过程数据的储层岩性判别问题,建立了一类学习向量量化过程神经元网络模型(LVQ-PNN:Learning Vector Quantization Process Neural Network)。该模型通过增加输出层,扩展了自组织过程神经元网络的深度结构;采用无监督竞争与有教师示教相结合的算法策略,提高了多维信号特征的自适应提取和自组织综合能力。实验证明,该方法具有较好的岩性特征综合和辨识能力,岩性识别率达到了84.7%。