论文部分内容阅读
为了提高滚动轴承性能退化评估中退化指标的早期故障敏感性和稳定性,提出了一种基于嵌入选择的邻域保持嵌入(ESNPE)方法.首先,采用变分模态分解(VMD)对获得的振动信号进行分解,提取各本征模态分量的奇异值和相对能量等组成高维故障特征集.然后,采用NPE流行学习方法提取特征空间内的嵌入特征.针对传统NPE存在有效嵌入信息容易被抑制的问题,构建了一种基于Spearman相关系数的嵌入选择策略.该策略通过相关系数的大小衡量嵌入特征的有效性,并通过一阶差分的方法在轴承退化的早期阶段确定并保留有效嵌入特征.最后,采