论文部分内容阅读
针对脑部磁共振图像中白质、灰质和脑脊液的分割精度问题,提出一种融合稀疏表示和字典学习的图像分割方法。首先,利用基于块的输入数据来训练过完备字典;然后,根据学习到的字典获得最优稀疏表示的高维特征;最后,结合每个像素局部和非局部重构误差实现分割。在模拟和真实图像数据库上的实验结果表明,该方法能利用带有距离因子和稀疏因子的公式准确分割MR图像,在稳定性方面优于其他MR分割方法。