论文部分内容阅读
手写签名鉴别技术作为生物特征安全认证领域的重要技术之一,具有广泛的应用前景。为了提高手写签名鉴别的正确性,提出一种基于三层小波变换和CPN神经网络结合的方法。首先对手写签名样本图像采取滤波去噪、二值化、细化、归一化等预处理措施,然后使用离散DB3小波分解提取高通系数矩阵处理后作为样本特征进行提取,而后采用CPN神经网络分类器对4680个训练样本进行每样本7500次训练,最后使用训练完毕的分类器对待鉴别样本进行分类鉴别。在由36个鉴别实验组组成的实验数据集上,样本识别正确率达到了93. 48%。通过多