论文部分内容阅读
基于基因表达谱的肿瘤检测方法有望成为临床医学上一种快速而有效的肿瘤分子诊断方法,但由于基因表达谱数据存在维数过高、样本量很小以及噪音很大等特点,使得肿瘤信息基因选择成为一件有挑战性的工作.根据肿瘤基因表达谱样本集的特点,提出了一种以支持向量机分类性能为评估准则的寻找信息基因的启发式宽度优先搜索算法,其优点是能够同时搜索到基因数量尽可能少而分类能力尽可能强的多个信息基因子集.实验采用了3种肿瘤样本集以验证新算法的可行性和有效性,对于急性白血病、难以分类的结肠癌和多肿瘤亚型的小圆蓝细胞瘤样本集,分别只需2,4