论文部分内容阅读
温室环境是一个典型的时变、非线性、强耦合、大滞后及大惯性的复杂被控对象,使用传统方法的控制效果总是不太理想;粒子群算法是一种解决非线性、不可微分问题的优秀算法,具有很强的全局搜索能力,但该算法在进化后期容易出现速度变慢及早熟现象;BP神经网络具有很强的非线性处理能力和逼近能力,但梯度下降的算法本质决定了其具有容易陷入局部最优及初值敏感的缺点;针对两种算法的特性,进行优势互补,结合为综合改进的粒子群BP神经网络(IPSO—BPNN)算法;应用IPSO—BPNN算法对温室内的土壤温度、土壤湿度、空气温度、空气