基于蚁群K均值聚类算法的边坡稳定性分析

来源 :水电能源科学 | 被引量 : 0次 | 上传用户:ssdkln
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
针对岩石边坡稳定分析中常规聚类算法存在收敛速度慢、易陷入局部最优的局限性,基于蚁群信息素的K均值聚类法,提出一种解决边坡稳定性的新方法,分析了三峡库区36个边坡数据资料,并结合工程类比综合判断了边坡的稳定状态。结果表明,该法的聚类效果优于常规聚类法,计算效率高,为边坡稳定性分级的聚类分析评价提供了新途径。 For the stability analysis of rock slope, the conventional clustering algorithm has some limitations such as slow convergence rate and easy falling into local optimum. Based on K-means clustering method of ant colony pheromone, a new method to solve the slope stability is proposed. The data of 36 slopes in the Three Gorges Reservoir Area are combined with the engineering analogy to judge the slope stability. The results show that this method is superior to the conventional clustering method in clustering efficiency and has high computational efficiency. It provides a new way for cluster analysis and evaluation of slope stability classification.
其他文献
葡萄膜炎的病因现仍有50~70%不明,其重要合并症之一为继发青光眼。据日本井上洋一统计继发青光眼占青光眼的34.5%,为最常见的一种青光眼,葡萄膜炎继发青光眼在继发青光眼中又