Cobalt tungsten phosphide with tunable W-doping as highly efficient electrocatalysts for hydrogen ev

来源 :纳米研究(英文版) | 被引量 : 0次 | 上传用户:cxycsnf
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
It has been of interest in seeking electrocatalysts that could exercise equally high-efficient and durable hydrogen evolution upon nonselective electrolytes in both acidic and alkaline environments.Herein,we report a facile strategy to fabricate cobalt tungsten phosphides (CoxW2-xP2/C) hollow polyhedrons with tunable composition based on metal-organic frameworks (MOFs) template method.By the deliberate control of W doping,the synthesized catalyst with the composition of Co0.9W1.1P2/C is found to be able to achieve a current density of 10 mA·cm-2 at overpotentials of 35 and 54 mV in acidic and alkaline media,respectively.This combined electrochemical property stands atop the state-of-the-art electrocatalyst counterparts.To unveil the peculiar behavior of the structure,density functional theory (DFT) calculation was implemented and reveals that the surface W-doping facilitates the optimization of hydrogen absorption free energy (ΔGH·) as well as the thermodynamic and kinetics barriers for water dissociation,which is coupled with the hollow structure of Co-W phosphides,leading to the prominent HER catalytic performance.
其他文献
Electrochemical CO2 reduction reaction (CO2RR) offers a practical solution to current global greenhouse effect by converting excessive CO2 into value-added chemicals or fuels.Noble metal-based nanomaterials have been considered as efficient catalysts for
Owing to their excellent optoelectronic properties,halide perovskite is very promising for photodetectors and other optoelectronic devices.Perovskite heterostructures are considered to be the key components for these devices.However,it is challenging to r
As a new type of iron-based superconductor,CaKFe4As4 has recently been demonstrated to be a promising platform for observing Majorana zero modes (MZMs).The surface of CaKFe4As4 plays an important role in realizing the MZM since it hosts superconducting to
Tumor cells undergoing immunogenic cell death (ICD) have emerged as an in situ therapeutic vaccine helping to activate a persistent anti-tumor response.Several chemotherapeutic agents have been demonstrated to induce ICD,however accompanied with severe ad
With the increasing demand for smart wearable clothing,the textile piezoelectric pressure sensor (T-PEPS) that can harvest mechanical energy directly has attracted significant attention.However,the current challenge of T-PEPS lies in remaining the outstan
External electric field and interlayer twist introduce diverse changes in their confined electronic states of bilayer graphene quantum dots.Using a quantum-dot model,the band gaps of twisted bilayer graphene in finite sizes of about 1.4-2.4 nm with varyin
Sodium ion batteries (SIBs) are alternatives to lithium ion batteries (LIBs),and offer some significant benefits such as cost reduction and a lower environmental impact;however,to compete with LIBs,further research is required to improve the performance o
Impeding high temperature sintering is challengeable for synthesis of carbon-supported single-atom catalysts (C-SACs),which requires high-cost precursor and strictly-controlled procedures.Herein,by virtue of the ultrastrong polarity of salt melts,sinterin
Considerable smoke and toxic volatiles generation has compromised the application of thermoplastic polyurethane (TPU) and caused a great threat to human life.Here,nano-MgFe layered double hydroxide (MgFe-LDH) with uniform particle size was synthesized to
Bufalin is efficacious in treating various tumors,however,the clinical application of which is restricted by the myocardial toxicity.Developing a smart synergetic delivery system is widely considered as a promising therapeutic strategy.To address this iss