论文部分内容阅读
研究股票价格准确预测问题,股票价格变化具有非线性、时变性,且含有噪声,单一或传统线性预测模型不能全面反映其变化规律,预测精度低,误差大。为了提高股票价格预测精度,提出一种组合的股票价格预测模型(CAR—BPNN)。首先采用主成分分析对股票价格数据进行预处理,消除噪声,然后采用CAR对线部分进行预测,BPNN对非线性部分进行预测。采用熵值法确定CAR和BPNN对预测结果进行组合,获得股票价格的最终预测结果。通过股票价格实际数据对CAR—BPNN进行测试,测试结果表明,CAR—BPNN充分利用两种模型的优点,