人脸伪造检测泛化性方法综述

来源 :计算机科学 | 被引量 : 0次 | 上传用户:sun593792820
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
深度学习技术的快速发展为深度伪造的研究提供了强有力的工具,人眼越来越难区分伪造视频图像的真假.伪造的视频图像会对社会生活造成巨大的负面影响,如:金融欺诈、假新闻传播、人身欺凌等.目前,基于深度学习的假脸检测技术在多个基准数据库(如FaceForensics++)上已经达到了较高的准确率,但在跨数据库上的检测精度远低于源数据库内的检测精度,即许多检测方法难以推广到不同的或未知的伪造类型上.专注于基于深度学习的人脸伪造检测方法泛化性研究,首先对伪造检测常用的数据库进行简单介绍和比较;其次从数据、特征和学习策略3个方面对视频图像篡改检测方法的泛化性进行分类总结和分析;最后讨论未来人脸篡改检测泛化性的发展方向和挑战.
其他文献
近年来针对合成孔径雷达(synthetic aperture radar,SAR)图像中缺乏颜色和纹理细节的舰船检测技术在深度学习领域中得到了广泛研究,利用深度学习技术可以有效避免传统的复杂特征设计,并且检测精度得到极大改善.针对舰船目标检测框具有高长宽比和密集排列问题,提出一种基于改进YOLOv5的目标检测方法.该方法针对舰船目标检测框特点将检测框长宽作为参数进行综合考虑并对损失函数进行曲线优化,并结合坐标注意力机制(coordinate attention,CA),在模型轻量化的同时实现对舰船目标检测
上市公司年报中的描述性文本信息是上市公司信息披露的重要组成部分,通过对上市公司信息披露文本的挖掘与分析可以提高对其财务风险的预测能力.基于BERT(bidirectional encoder representations from transformer)模型与自编码器(autoencoder,AE),提出了BERT-AE融合文本特征提取模型,提取A股市场531家上市公司年报中“经营情况讨论与分析”和“审计报告”的文本特征,构建能够反映财务困境公司与正常公司的文本特征指标,随后将文本特征指标与财务指标数
为解决复杂融合空域内的无人机(unmanned aerial vehicle,UAV)冲突解脱过程中消耗大的问题,提出基于速度障碍法的合作型无人机的最优防相撞策略.首先根据有限时间的速度障碍法进行冲突探测,并推导出解脱条件下冲突双方航向改变量与速度大小改变量满足的关系,再将合作博弈概念用在冲突解脱过程中,利用最优化理论,将联盟福利最优解作为博弈双方最优解脱策略.该冲突解脱算法基于无人机冲突双方最小机动与满足自身性能约束的原则,实现支付代价最小前提下的实时冲突解脱.仿真结果表明该算法在不同冲突场景下具有可行
计算机视觉技术是人工智能技术的重要组成部分,也是计算机科学与信号处理研究的前沿领域.计算机视觉经过近年来的不断发展,在交通、医学、工业等多个领域得到了广泛应用.我国计算机视觉领域的研究者众多,研究成果在国际上具有很大的影响力,及时、集中、全面地报道计算机视觉相关理论、应用实践的最新成果与进展,以便研究人员快速、系统地了解新技术的发展动态和脉络,是策划本次专题的初衷.
期刊