电能质量复合扰动特征选择与最优决策树构建

来源 :中国电机工程学报 | 被引量 : 0次 | 上传用户:hainian3166
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
针对电能质量(power quality,PQ)复合扰动识别中缺少特征选择与最优决策树自动构建方法的不足,提出采用分类回归树的PQ特征选择与最优决策树构建方法.首先,通过S变换提取64种PQ特征,构成原始特征集;然后,采用嵌入式特征选择方法,获取特征Gini重要度及排序,确定最优特征子集;最后,应用1-标准误差规则子树评估法,进行代价复杂度剪枝,获得最优分类树.实验证明,新方法能够根据训练集自动构建最优决策树,并实现最优特征选择;最优决策树可准确识别不同噪声环境下,含多种复合扰动的PQ信号,分类准确率高于概率神经网络和支持向量机方法,具有良好的鲁棒性与抗噪性.“,”The lack of feature selection and optimal decision tree automatic construction method in complex power quality disturbances identification, a novel feature selection and optimal decision tree construction method based on classification and regression tree (CART) was proposed. Firstly, the 64 features of power quality were extracted by S transform to construct the original feature set. Then, the optimal feature subset were selected by Gini importance and sorting using an embedded feature selection method. Finally, one standard error rule subtree evaluation methods were applied to cost complexity pruning. After pruning, the optimal classification tree was obtained. The experimental results show that the new method can automatically construct the optimal decision tree and achieve the optimal feature subset selection according to the training set. The optimal decision tree can accurately identify power quality signals with multiple kinds of complex disturbances in different noise environments. The classification accuracy is higher than probabilistic neural network (PNN) and support vector machine (SVM). The new method has good robustness and anti-noise performance.
其他文献
如何在单相畸变电网中快速准确的获取基波以及所需的特定次谐波信息,对并网型电力电子变换器的控制系统而言是十分重要的.针对这一问题,提出了一种基于通用信号延迟叠加算子(