基于ATT-DGRU的文本方面级别情感分析

来源 :计算机科学 | 被引量 : 0次 | 上传用户:shizijiazuren
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
方面级别情感分类是针对给定文本、分析其在给定方面所表达出的情感极性。现有的主流解决方案中,基于注意力机制的循环神经网络模型忽略了关键词邻近上下文信息的重要性,而结合卷积神经网络(Convolutional Neural Network,CNN)的多层模型不擅长捕捉句子级别的长距离依赖信息。因此,提出了一种基于截断循环神经网络(Disconnected Gated Recurrent Units,DGRU)和注意力机制的方面级别情感分类网络模型(Attention-Disconnected Gated Re
其他文献
在软件的开发测试部署过程中,调试工作耗费了开发人员非常多的精力和时间,有时一个很难被发现的错误会导致多次重启调试。反向调试是软件调试的一种技术,无需重启即可向后查
为了在食品领域从非结构化语料中抽取出有效的实体信息,提出了一种基于BERT(Bidirectional Encoder Representations from Transformers)和对抗训练的命名实体识别(Named Ent
克隆代码研究与软件工程中的各类问题密切相关。现有的克隆代码稳定性研究主要集中于克隆代码与非克隆代码的比较以及不同克隆代码类型之间的比较,少有研究对克隆代码的稳定
针对网络流量的混沌特性以及海量特性,为弥补网络流量预测模型存在的不足,以获得更优的网络流量预测结果,提出了面向海量数据的网络流量混沌预测模型。该模型首先采用小波分
事件检测是信息抽取领域中一个重要的研究方向,其主要研究如何从非结构化自然语言文本中提取出事件的触发词,并识别出事件的类型。现有的基于神经网络的方法通常将事件检测看
纠删码消耗的存储空间较少,获得的数据可靠性较高,因此被分布式存储系统广泛采用。但纠删码在修复数据时较高的修复成本限制了其应用。为了降低纠删码的修复成本,研究人员在
协同过滤算法是推荐系统中使用最广泛的算法,其核心是利用某兴趣爱好相似的群体来为用户推荐感兴趣的信息。传统的协同过滤算法利用用户-项目评分矩阵计算相似度,通过相似度
群体智能作为人工智能2.0时代最突出的研究方向之一,受到了工业界和学术界研究者们的广泛关注。传统的人工智能模型倾向于使用全连通网络结构,认为全连通网络结构的人工智能
随着新一代人工智能技术的发展,制造系统由以往的人物二元系统发展为人机物三元系统,跨域跨层的多元数据融合成为必然趋势。本体作为一种能在语义上描述数据的概念模型,被广