论文部分内容阅读
针对红外与可见光图像匹配的难题,提出了一种基于自相似性的异源图像点特征匹配算法。首先对红外与可见光图像进行小邻域平方和计算;再通过构造高斯金字塔,运用FAST一9进行角点检测,使得检测的特征点具有尺度属性;然后,统计特征点邻域的特征信息以确定特征点的主方向;再求取在相应尺度下特征点邻域的相关平面,对相关平面进行区域划分,提取每个区域相关平面的极值以构造100维的自相似性描述子,并对描述子进行归一化处理;而后,剔除不良特征描述子;最后采用最近邻匹配算法进行特征匹配。实验结果表明,提出的算法能够实现红外与可见