Composition and size dependent torsion fracture of metallic glasses

来源 :材料科学技术(英文版) | 被引量 : 0次 | 上传用户:liongliong478
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
The fracture of metallic glasses(MGs)of different compositions and sizes down to micrometers under torsion loading were systematically investigated.Contrary to the flat shear fracture along the circumfer-ential plane as commonly supposed under torsion,we find that the torsion fracture of metallic glasses can deviate from flat shear plane,and the fracture angle is closely dependent on the composition and the size of MG samples.With a conversion method,we show that the torsion fracture of both millimeter-and micrometer-sized MGs can be described by the ellipse fracture criterion as originally proposed for the tension fracture.The deviation from the circumferential shear plane under torsion is further shown to intrinsically relate to the fracture toughness of MGs.The tougher MG tends to have a smaller fracture angle with respect to the maximum shear plane,and vice versa,indicating a correlation between the fracture toughness and pressure/normal stress sensitivity in MGs.Our results provide new insights on the fracture mechanism and are helpful to design and control the deformation and fracture behavior of MGs under torsion loading.
其他文献
In this work,we report a facile dealloying strategy to tailor the surface state of nanoporous TiO2 towards high-efficiency sulfur host material for lithium-sulfur(Li-S)batteries.When used as a sulfur cathode material,the oxygen-deficient TiO2-x exhibits e
Electrohydrodynamic(EHD)3D printing of carbon-based materials in the form of orderly networks can have various applications.In this work,microscale carbon/nickel(C-Ni)composite electrodes with con-trolled porosity have been utilized in electrochemical ene
High-entropy oxides(HEOs)are considered promising thermal barrier coating(TBC)materials due to their unique thermophysical performances induced by the entropy effects.In this work,(La0.2Ce0.2Pr0.2Sm0.2Eu0.2)2Hf2O7 high entropy hafnate,as a thermal barrier
High-entropy alloys(HEAs)have attracted great research interest owing to their good combination of high strength and ductility at both room and cryogenic temperatures.However,expensive raw mate-rials are always added to overcome the strength-ductility tra
The microstructure and chemical compositions of the solid solution-treated Mg-3Nd-1Li-0.2Zn alloy were characterized using optical microscope,scanning electron microscope(SEM),transmission electron microscope(TEM),electron probe micro-analyzer(EPMA)and X-
The risk of leakage and low thermal conductivity severely hinder the wide application of phase change materials(PCMs).In this work,the high-density polyethylene/carbon nanotubes(HDPE/CNTs)porous scaffolds were successfully fabricated via a sacrificial tem
Metal and alloy nanoparticles synthesized by chemical reduction have attracted increasing attention due to their superior physical,chemical,and biological properties.However,most chemical synthesis processes rely on the use of harsh reducing agents and co
Aberration-corrected scanning transmission electron microscopy has been used to study a novel metastable phase,designated as β“phase,induced to form by electron beam irradiation in a Mg-9.8 wt.%Sn alloy.This phase is spherical in three dimensions,having a
Dissimilar welding of AZ31/ZK60 magnesium alloys with a thickness of 2 mm was successfully carried out by the double-sided friction stir spot welding with adjustable probes.A dissimilar joint bearing flat surfaces on both sides without a keyhole was obtai
Grain growth and shrinkage are essential to the thermal and mechanical stability of nanocrystalline metals,which are assumed to be governed by the coordinated deformation between neighboring grain boundaries(GBs)in the nanosized grains.However,the dynamic