论文部分内容阅读
在非标准多饱和模型下,研究了Loeb乘积空间及Keisler′s Fubini定理。首先,应用Loeb构造方法分别构造了Loeb乘积空间 L(Y1× Y2)和乘积Loeb空间 L(Y1)× L(Y2),并得到了L(A1)L(A2)包含于 L(A1× A2)。其次,? A ∈ L(A1× A2),证明了如果(ν1×ν2)L(A)=0,则对于几乎所有的 y1∈ Y1,截口 Ay1是 L(A2)-可测的。最后,在Loeb乘积空间上证明了Keisler′s Fub