论文部分内容阅读
针对经典的Mean-Shift算法在目标发生遮挡时容易导致跟踪失败的问题,提出一种改进的均值偏移跟踪算法。将目标的运动在较短时间内看作一时不变系统,通过引入Kalman滤波进行参数辨识而使发生遮挡后的跟踪系统具有后续状态预测的能力。整个跟踪过程分为Mean-Shift跟踪下的Kalman参数辨识和基于Kalman状态估计的Bhattacharyya系数分析两个子过程交替执行。对不同的视频序列测试的结果表明,算法能够对发生遮挡后的目标进行持续、稳健的跟踪。