论文部分内容阅读
为进一步提高多分类器系统的分类性能,提出了一种基于知识发现的特征一决策层多分类器融合新方法.各分类器工作于具有互补分类信息的不同特征空间且其类型由不同的类间可分性度量决定.各分类器输出的不确定性度量从建立的多个决策表中导出,并具有条件mass函数的形式.进而基于广义粗集模型和Dempster-Shafer理论(DST)构造了一种新颖的特征一决策层融合框架.高光谱遥感图像的分类实验表明,与多数表决融合(PV)相比,所提出的方法可有效提高多分类器系统的分类性能.