基于多列卷积神经网络的参数异步更新算法

来源 :计算机应用 | 被引量 : 0次 | 上传用户:zhuzhihua
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
针对现有人群计数算法采用同步人工优化深度学习网络,忽略了网络学习的负面信息,导致大量冗余参数甚至过拟合,进而影响到计数准确性的问题,提出基于多列卷积神经网络MCNN(Multi-column Convolution Neural Network)的参数异步更新算法.首先将单帧图像输入网络,经过三列卷积分别提取不同尺度特征,通过列之间的交互信息学习两列间特征图的关联性;接着,根据优化的交互信息及更新的损失函数异步更新每列参数直至算法收敛;最后采用动态卡尔曼滤波将每列输出密度图进行深度融合,并对融合的密度图中所有像素求和得到图像总人数.实验结果表明,所提算法在UCSD(University of California San Diego)数据集上的平均绝对误差(MAE)比该数据集上最优MAE表现的ic-CNN+McML(Iterative Crowd Counting Convolution Neural Network Multi-column Mutual Learning)减小了1.1%,均方误差(MSE)比该数据集上最优MSE表现的CP-CNN(Contextual Pyramid Convolution Neural Network)减小了4.3%;所提算法在ShanghaiTech Part_A数据集上的MAE比该数据集上最优MAE表现的ic-CNN+McML减小了1.7%,MSE比该数据集上最优MSE表现的ACSCP(Adversarial Cross-Scale Consistency Pursuit)减小了3.2%;在ShanghaiTech Part_B数据集上的MAE和MSE分别比该数据集上最优MAE和MSE表现的ic-CNN+McML减小了18.3%、35.2%;在UCF_CC_50(University of Central Florida Crowd Counting)数据集上的MAE和MSE分别比该数据集上最优MAE和MSE表现的ic-CNN+McML减小了1.9%、9.8%.可见,该算法能有效提高人群计数的准确性和鲁棒性,且允许输入图像具有任意大小或分辨率,能适应检测目标的大尺度变换.
其他文献
为满足客户对装载机智能化、自动化的需求,提高装载机的作业效率,减轻驾驶员的劳动强度,根据装载机的工作特点、操作方式,对装载机的辅助操作控制系统进行研究,设计开发一种装载机辅助操作控制系统.该系统实现了装载机辅助换挡、一键举升、自动放平、缓冲、微动等功能,极大地简化驾驶员操作.
本文分析了商品混凝土的碳足迹,重点分析混凝土生产企业碳排放特点,在此基础上提出了相应的低碳混凝土生产技术,以及对低碳型混凝土生产企业建设提出思考.