论文部分内容阅读
森林火灾图像识别是森林防火监测系统的核心。目前的主要研究多在图像的向量模式表示上展开。由于向量模式的样本数由图像分辨率决定,易导致模型训练的负担过重。样本类别标记的准确性,直接影响后续的模型训练和目标识别。而目前的类别标定工作多采用手工或图像预处理方法完成,任务繁琐且容易出错。此外,由于像素位置在图像向量化过程中被调整,不可避免地会损失图像原有的结构信息。鉴于此,提出了基于矩阵分块的半监督学习算法Semi-MHKS,优势在于:①矩阵分块形式的样本数远低于向量模式,可有效缩短训练和识别时间;②只需标记