基于图卷积神经网络的中文实体关系联合抽取

来源 :计算机工程 | 被引量 : 0次 | 上传用户:prettyxu
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
现有实体关系联合抽取方法未充分考虑中文句子中实体关系的复杂结构特征,为此,提出一种基于图卷积神经网络(GCN)的中文实体关系联合抽取方法.在双向长短时记忆网络抽取序列特征的基础上,利用GCN编码依存分析结果中的语法结构信息,借鉴改进的实体标注策略构建端到端的中文实体关系联合抽取模型.实验结果表明,该方法的F值可达61.4%,相比LSTM-LSTM模型提高了4.1%,GCN能有效编码文本的先验词间关系并提升实体关系抽取性能.
其他文献
深度强化学习是指利用深度神经网络的特征表示能力对强化学习的状态、动作、价值等函数进行拟合,以提升强化学习模型性能,广泛应用于电子游戏、机械控制、推荐系统、金融投资等领域.回顾深度强化学习方法的主要发展历程,根据当前研究目标对深度强化学习方法进行分类,分析与讨论高维状态动作空间任务上的算法收敛、复杂应用场景下的算法样本效率提高、奖励函数稀疏或无明确定义情况下的算法探索以及多任务场景下的算法泛化性能增强问题,总结与归纳4类深度强化学习方法的研究现状,同时针对深度强化学习技术的未来发展方向进行展望.
为了满足高精度远程溯源需求,设计和实现了一种基于光纤的远程溯源系统,根据光纤双向时间传递的高精度、高稳定的优点,将本地时间源的时间向远端高基准时间源进行溯源,系统还采用了主备路双路备份机制,保证了系统的可靠性.通过实验验证,基于光纤的远程溯源系统能够达到时差保持在2 ns以内,日频率稳定度在7×10-15内的溯源效果,同时采用本系统的主备路时间同步技术,能够实现主备路时差控制在0.5 ns以内.