一种有效的基于GraphX的分布式结构化图聚类算法

来源 :计算机科学与探索 | 被引量 : 0次 | 上传用户:helen515
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
结构化图聚类是大图数据分析的主要技术之一,在社区检测、生物功能发现和图可视化等许多实际应用中具有重要意义。目前的分布式结构化图聚类算法大多基于Hadoop的MapReduce框架,但该框架需要精确计算图中所有邻接顶点之间的相似性且需要大量的磁盘I/O开销,极大增加了算法的运行时间。针对以上问题,主要工作和贡献点如下:(1)提出两个削减规则,第一个削减规则用来减少邻接顶点之间相似性计算次数,第二个削减规则通过非精确计算邻接顶点间的相似性来减少计算时间。(2)提出一种基于Spark中GraphX的结构化图聚类
其他文献
本文着重强调电气线路敷设时产生的问题,以及电气线路发热的缘由。
以宁夏电力公司石嘴山供电局中心机房的设计和建设为实例,从设计规划开始到各个项目的阶段施工和机房内各种系统的实施等,对电力企业中心机房的建设目的、设计思路及各项技术要