论文部分内容阅读
贷款业务是银行极为重要的资产业务,构建一个适用的客户信用评估模型十分重要。由于近年来在智能学习系统领域发展起来的新理论,并引入小样本学习的通用学习算法——支持向量机(Support Vector Machines,简称SVM),建立银行客户信用评估模型。由于在统计学习理论中的结构风险最小化的SVM算法,克服了传统信用评估模型中的过拟合和局部最优的缺点。同时,通过在模型中采用核函数,有效地解决了线性不可分问题。因此,使得基于这种技术的评估模型具有较强的实用性。通过与神经网络模型的比较,证实了该方法用于风险评