基于用户分群的低轨卫星系统切换管理策略

来源 :计算机工程 | 被引量 : 0次 | 上传用户:xiangwang111
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
低轨(LEO)卫星系统具有通信距离远、覆盖范围广等诸多优势,在应急通信、灾害预警等领域发挥着重要作用,尤其能有效弥补地面基站无法服务偏远山区、海洋等盲区的缺陷.然而,LEO卫星高速移动会导致用户终端频繁切换,同时在用户聚集场景下,用户群组并发切换将导致LEO卫星系统发生网络拥塞问题.为此,提出一种基于用户分群的多波束LEO卫星系统切换管理策略.建立多波束覆盖模型,基于该模型设计群组切换管理机制,在成员选择的过程中考虑切换触发时刻和最佳波束小区2个因素,将具有相似切换行为的用户分为一组,以此降低系统的信令开销.在此基础上,从分群处理、群组切换、资源释放3个方面设计完整的切换流程以及切换信令交互机制,并基于OPNET软件搭建LEO卫星系统仿真平台.测试结果表明,该策略能够简化切换管理过程中的重复操作,降低系统信令开销和平均切换时延,提高切换成功率,且用户聚集数目越多,其性能相对传统用户独立切换方案的提升效果越明显.
其他文献
知识图谱在医疗、金融、农业等领域得到快速发展与广泛应用,其可以高效整合海量数据的有效信息,为实现语义智能化搜索以及知识互联打下基础.随着深度学习的发展,传统基于规则和模板的知识图谱构建技术已经逐渐被深度学习所替代.梳理知识抽取、知识融合、知识推理3类知识图谱构建技术的发展历程,重点分析基于卷积神经网络、循环神经网络等深度学习的知识图谱构建方法,并归纳现有方法的优劣性与发展思路.此外,深度学习虽然在自然语言处理、计算机视觉等领域取得了较大成果,但自身存在依赖大规模样本、缺乏推理性与可解释性等缺陷,限制了其进
使用特定数学模型的路由转发算法难以满足用户多样化的服务质量需求,基于深度学习的智能路由方案因具有准确性、高效性、通用性等优势,成为路由决策的发展方向.然而,目前多数智能路由算法在网络拓扑动态变化时需要重新训练,造成路由更新不及时,难以应对网络拓扑动态变化.提出一种基于图卷积神经网络(GCN)的智能路由算法.线下利用提前采集的网络信息,根据路由开销标签训练GCN智能路由模型,通过该模型输出单跳路由开销.线上采集实时信息并根据模型输出的路由开销结果对网络层路由协议进行调整,计算最小路由开销的路由路径,实现自适