论文部分内容阅读
对于时滞双向联想记忆(DBAM)神经网络的平衡点的稳定性问题,目前人们已经得到了很多富有意义的成果.该文提出一种新的神经网络模型——标准神经网络模型(SNNM),通过状态的线性变换,将DBAM神经网络转化为时滞SNNM(DSNNM),并利用有关DSNNM的稳定性的一些结论,得到DBAM神经网络平衡点的全局渐近稳定性的充分条件.这些条件都以线性矩阵不等式(LMI)的形式给出,容易验证,保守性低.该方法扩展了以前的稳定性结果,同时也适用于其它类型的递归神经网络(时滞或非时滞)的稳定性分析.