运用ARIMA模型对股价预测的实证研究

来源 :经济研究导刊 | 被引量 : 0次 | 上传用户:ebear2009
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  摘 要:随着我国资本市场的扩大开放,国外资本进一步流入我国股市,中国股市迎来新的挑战与机遇。金融市场股票的价格预测问题再次成为公众关注的热点。基于此,选取金融市场股票的历史收盘价数据,以Python为实现工具,通过建立ARIMA模型来进行检验与预测,得到的股价预测值与真实值短期内最大误差不超过0.04。这表明以ARIMA模型对股价进行短期预测具有很好的效果,能够为股市投资者提供帮助。
  关键词:Python;ARIMA模型;股价预测
  中图分类号:F830.91        文献标志码:A      文章编号:1673-291X(2021)25-0076-03
  引言
  正如我们所知,股票市场是企业融资的重要渠道,也是反映一个国家经济状况的“晴雨表”。股票的价格作为股票市场的重要信息,其价格的变化是成千上万投资者的共同决策结果,因此影响股价波动的因素众多。不同的因素会对股价造成如何的影响,影响的程度有多大,往往难以衡量。因此,我们不去探究价格变化背后原因是什么,而以过去的价格变化为依据,去发现股价变化的规律,从而实现对股价的预测。当然作为一种随机变化过程,我们无法完全预测股价的未来走向,但这不代表股价就是完全不可预测的,股票价格的变动过程就是一组可以看得到的时间序列数据,其既反映股价的随机变化,也包含了一定的系统运行规律。ARIMA模型理论成熟,是当前处理时间序列数据的常用预测模型,可以很好预测具有波动性的时间序列数据的短期趋势。因此,本文运用ARIMA模型对西南证券的收盘价作为历史数据进行建模,以当前热门的Python作为建模工具,对未来四天的股价进行预测。
  一、选题意义与模型理论基础
  (一)选题意义
  基于Eveiws所实现的股价预测方法已有相应成熟的研究,且该方法在短期的预测精度能够得以保证,但还有许多的不足。而Python在股价预测领域的应用有待检验,基于这样的背景,本文希望通过使用Python工具进行股票价格的短期预测,以对比Eviews工具做出的结果,分析使用新的研究工具是否可以给股价带来更精确的估计。
  (二)ARIMA模型理论介紹
  ARIMA模型又被称为自回归移动平均模型,于20世纪70年代由美国统计学家Jenkins和英国统计学家Box提出。该模型主要运用在时间序列变量的短期预测中,因单个时间序列值具有不可测性,但整体时间序列值具有一定的规律,使用ARIMA模型将这种规律以数学形式表示。并通过对数学形式的研究,实现对时间序列值的短期预测。
  ARIMA模型可分为三种,AR(p)模型为自回归模型,MA(q)模型为滑动平均模型,ARIMA(p,d,q)为自回归滑动平均模型。ARIMA是前两种模型的糅合,其中AR是自回归过程,p为自回归的阶数;MA为移动平均过程,q为移动平均阶数,d为非平稳向平稳转变的差分次数。
  一般的ARIMA(p,q)模型形式可以表示为:
  (1)式中,{?着t}是白噪音序列,p和q都是非负整数,AR和MA模型都是ARIMA(p,q)的特殊情形,当p=0时,ARIMA(0,q)=MA(q);当q=0时,ARIMA(p,0)=AR(P)。
  由于ARIMA模型运用于时间序列平稳状态,而当时间序列处于不平稳时,需要经过一系列的处理,使时间序列平稳化。在含有短期趋势平稳的非平稳时间序列可以通过差分使非平稳序列成为平稳序列。
  (三)ARIMA模型建模步骤
  ARIMA模型的建模可分为以下四个步骤:首先,对原序列进行平稳性检验,如果检验结果为不平稳,需要通过差分变化或者其他变化,使序列满足平稳性条件。其次,通过计算描述序列特征的统计量来确定模型,并结合BIC准则确定模型的阶数。再次,利用最小二乘法估计模型的参数,并进行合理性检验。最后,进行诊断分析,通过生成的模型对数据进行预测,并将实际数据与之进行对比,进行预测准确定检验。若不精确重新确定参数,再次建立新的模型。
  二、ARIMA模型的建立与分析
  (一)数据来源
  本文数据来源于Wind数据库,从Wind上选取西南证券自2019年1月2日至12月9日的股票收盘价作为原始数据,数据样本总量为229个。样本量基本涵盖了西南证券2019年以来的所有交易日的收盘价。
  (二)数据的单位根检验与平稳化处理
  通过Python可视化,对西南证券股价的原始数据处理,可以得到收盘价的时间序列图像,通过观察图像我们发现,西南证券的收盘价时间序列数据呈现非平稳的特征,这对于数据的初步判断来说还远远不够。因此,我们通过对原始数据进行单位根检验,对数据进行单位根检验后,得出ADF检验的t统计量为-2.786767均小于在显著性水平为1%、5%和10%时分别所对应的临界值-3.458366,-2.873866和-270.425668。可以得出,原始数据的ADF检验结果落于接受原假设区间内,即西南证券的收盘价时间序列数据存在单位根,数据是非平稳的。时间序列数据的非平稳可以通过差分法来进行解决,因此我们对原始数据进行一阶差分,并进行ADF检验得出t统计量的值,在对数据进行一阶差分处理之后,此时得出的t统计量的值为-16.611521均大于在显著性水平为1%、5%和10%时分别所对应的临界值-3.458366,-2.873866和-270.425668。也就意味着在对原始数据进行一阶差分处理之后,时间序列数据不再是非平稳的。
  (三)ARIMA模型的建立与参数估计
  建立ARIMA模型的关键就是要通过观察ACF、PACF图,以及通过BIC信息准则来确定ARIMA模型的最佳p值和q值。通过Python,可以得到相应的自相关图ACF和偏自相关图PACF,根据ACF、PACF图的观察方法,暂定ARIMA模型的p、q值为1,1,即模型为ARIMA(1,1)。为保证模型的最优,仅仅通过肉眼的观察不足以判断ARIMA模型最优的p、q值,还必须通过BIC信息准则来做进一步判断,即找出BIC最小值。   通过传统的Eviews软件来对ARIMA模型定阶,要通过多次去输入可能的p、q值,得到多个BIC的值,从而找出最小BIC所对应的p、q值。这样的实现过程十分烦琐,而运用Python工具来实现,只需要几行代码就可以找到最优的p、q值。根据Python的输出结果,最优的p、q值分别为(1,0)。为检验Python实现的准确性,我们还是做出了ARIMA(1,0),ARIMA(2,1),ARIMA(2,2),ARIMA(3,3),ARIMA(0,3),ARIMA(3,2)所对应的BIC值如表1所示。
  可见,ARIMA(1,0)所对应的BIC值为最小,最终,我们选择以ARIMA(1,0)来进行模型构建。
  (四)ARIMA模型检验
  对模型参数估计完之后,我们需要对模型进行检验。
  首先,要验证残差项是否符合正态分布,我们以QQ图作为验证残差项是否符合正态分布的方式如图1所示。QQ图是一种散点图,对应于正态分布的QQ图,就是由标准正态分布的分位数为横坐标,样本值为纵坐标的散点图。要利用QQ图鉴别样本数据是否近似于正态分布,只需看QQ图上的大多数点是否近似地在一条直线附近。观察QQ图可以发现,大多数数据点都近似在直线附近,即残差项符合正态分布的特征。
  其次,我们通过进行Ljung-Box检验,得出残差项对应的P值均大于0.05,说明残差项属于白噪声序列,残差项中的有用信息已被提取完,模型基本完善。
  (四)ARIMA模型预测结果与分析
  最后,我们以ARIMA模型对未来三天的股价预测,并将预测值与真实值进行比较如表2所示。根据表2可知,用模型预测出的股票价格与真实价格较为接近,误差较小,说明ARIMA模型可以用来预测股票价格。但由于股票的价格变动较大,所以本模型只适合进行短期预测而不适用于长期。
  结语
  关于股价的预测是一个古老的問题,不少学者都已对其进行过研究,但从来没有一种方法可以完全预测股价的走势,可见股价的预测是多么复杂。尽管随着时间的推移,对于股价的预测涌现出不少新的方法,但时间序列数据理论依旧是对股价预测的有效手段。本文通过选取A股股市某一只股票作为研究对象,以ARIMA模型作为预测模型,通过Python工具,最终得出对股票的未来几天预测值与真实值最大误差不超过0.04。这表明,以ARIMA模型对股价进行短期预测具有很好的效果,能够为股市投资者提供些许帮助。其次,本文改变了以Eviews软件来作为实现工具的传统方式,填补了以Python工具实现ARIMA模型来对股价预测领域的空白。
  参考文献:
  [1]  吴玉霞,温欣.基于ARIMA模型的短期股票价格预测[J].统计与决策,2016,(23):83-86.
  [2]  冯盼,曹显兵.基于ARIMA模型的股价分析与预测的实证研究[J].数学的实践与认识,2011,(22):84-90.
  [3]  赵国顺.基于时间序列分析的股票价格趋势预测研究[D].厦门:厦门大学,2009.
  [4]  陈阳.股票预测模型研究[D].哈尔滨:哈尔滨工程大学,2007.
  [5]  朱瑜.股市预测方法研究[D].西安:西北工业大学,2006.
  An Empirical Study on Stock Price Forecast by ARIMA Model
  LIU Song,ZHANG Shuai
  (Guizhou University,Guiyang 550025,China)
  Abstract:With the expansion and opening up of China’s capital market,foreign capital flows into China’s stock market,which ushers in new challenges and opportunities.Based on this,this paper selects the historical closing price data of the stock in the financial market,uses Python as the implementation tool,and establishes ARIMA model to test and forecast.The maximum error between the predicted value and the real value in the short term is not more than 0.04.It shows that ARIMA model has a good effect on short-term stock price forecasting,and can provide some help for stock market investors.
  Key words:Python;ARIMA model;Stock price forecast[责任编辑 辰 敏]
其他文献
摘 要:为了更好地推动当前农业发展、深化农村土地经营机制改革、解决“三农”问题,促进土地流转,农村土地信托模式应运而生。当前我国多个省份已经陆续开展农地信托流转,并取得了初步的成效。一方面,农地信托可以满足农民对于土地的多样化需求,合理利用农村土地资源,推动土地流转,提高农民收益;另一方面,当前发展农村土地信托面临多个问题。重点关注影响农户信托发展的几个关键问题,并从完善农地信托法律法规、提高农地
摘 要:随着新税法和汇算清缴的实施,我国个人所得税征收管理进入了全新的时代。在此背景下,公立医院因医务人员收入水平高、收入来源多样、收入类别繁杂、税收知识匮乏等原因,暴露出不少个人所得税管理问题。医院作为职工收入分配主体和税收扣缴义务人,应重新梳理医务人员收入特性,分析个人所得税管理中存在的问题与不足,并进行针对性解决,以期提高职工税收合规性,巩固医务人员纳税形象。  关键词:公立医院;个人所得税
摘 要:保障性住房项目建设作为党和国家的重要战略,是解决城镇低收入群体住房问题的重要手段和根本举措,是维系社会稳定的重要手段。近年来,在相关政策支持下,我国在保障性住房建设领域不断加大投入力度,保障性住房在改善城镇低收入群体的住房条件方面发挥了重要作用。但从当前实际看,贵阳市在保障性住房建设管理的体制机制方面仍旧存在诸多亟待解决的问题,影响到保障性住房建设及功能发挥。因此,政府必须重视保障性住房建
目的评价护理干预在早期先兆流产保胎患者中的应用价值。方法随机选取该院2018年1月—2019年6月收治的先兆流产保胎患者100例,按照随机数表法分为干预组(予以综合护理干预)和常规组(予以常规护理),每组50例,对比护理前后两组的焦虑评分及睡眠质量评分。结果干预组和常规组护理前SAS评分及PSQI评分中,干预组SAS、PSQI评分(67.50±7.68)分和(13.50±3.68)分和常规组(67.21±7.61)分和(13.52±3.62)分,差异无统计学意义(t=1.042、0.351,P>0.
摘 要:贵州农旅融合发展在区域上呈现明显的不均衡态势,要从不均衡走向均衡,需要根据各地“地脉、文脉”的差异性,对农旅融合发展在空间上定好位。贵州农旅融合在空间上主要由5个融合区构成,即:以铜仁为中心的黔东“山地旅游+生态林业”融合发展区;以兴义、毕节为中心的“黔西生态旅游+生态农业”、山地牧业融合发展区;以都匀、凯里为中心的黔南特色旅游+经果林业融合发展区;以遵义为中心的黔北红色旅游+特色林业融合
摘 要:创新发展育人机制是高校实现高质量人才培育目标的关键,而校企协同人才培育是产学研创新发展背景下育人机制创新的重要形式。当前,由于校企协同育人理念滞后、校企协同育人平台缺乏、校企协同育人内容单一,导致校企协同人才培育存在参与主体的积极性偏低、校企协同的实效性不强、参与学生的获得感欠佳等困难。因此,必须以创新思维转变校企协同育人理念、以创新机制构建校企协同育人平台、以创新资源保障校企协同育人工作
企业金融投资风险管理是帮助企业获得投资收益的重要途径,也是降低企业投资风险的有效方式,因此具有研究意义。从企业金融投资目的和现状出发,着重分析五类金融投资风险。基于此,得出企业金融风险管理策略,一是持续提升对金融投资风险的重视程度;二是加强金融投资风险预测与评估;三是制定科学的金融投资策略,科学调配产品比例;四是不断完善金融投资风险管控体系;五是打造一支精干高效的专业人才队伍。以期增强企业的偿债能力,帮助企业利用闲置资金获得投资收益。