论文部分内容阅读
现有的排序学习概念假设每个训练样本都与实例和可靠的标签相关联,但这种假设对保持标签的真实性并不适用。因此,当每个训练实例都被多个可能不可靠的注释器标注时,可以通过列表排序学习从多个注释器中获得的众包标签来进行排序学习功能。结合Mallows模型和Plackett-Luce(P-L)模型,提出一种新的概率排序模型。将注释器的辅助信息作为约束函数融合到参数估计中,并使用最大似然估计方法学习得到参数集。通过最大期望算法(EM)迭代更新参数集,得到最优注释器的专业知识程度的参数集和排名函数参数。实验结果显示