Bio-Inspired Microwave Modulator for High-Temperature Electromagnetic Protection,Infrared Stealth an

来源 :纳微快报(英文版) | 被引量 : 0次 | 上传用户:dreamagain1986
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
High-temperature electromagnetic (EM) protec-tion materials integrated of multiple EM protection mechanisms and functions are regarded as desirable candidates for solving EM interference over a wide temperature range.In this work,a novel microwave modulator is fabricated by introducing carbonyl iron particles (CIP)/resin into channels of carbonized wood (C-wood).Innovatively,the spaced arrangement of two microwave absorbents not only achieves a synergistic enhancement of magnetic and die-lectric losses,but also breaks the translational invariance of EM characteristics in the horizontal direction to obtain multiple phase discontinuities in the frequency range of 8.2-18.0 GHz achieving modulation of reflected wave radiation direction.Accordingly,CIP/C-wood microwave modulator demonstrates the maximum effective bandwidth of 5.2 GHz and the maximum EM protection efficiency over 97% with a thickness of only 1.5 mm in the temperature range 298-673 K.Besides,CIP/C-wood microwave modulator shows stableand low thermal conductivities,as well as monotonic electrical conductivity-temperature characteristics,therefore it can also achieve thermal infrared stealth and working temperature monitoring in wide temperature ranges.This work provides an inspiration for the design of high-temperature EM protection materials with multiple EM protection mechanisms and functions.
其他文献
针对水泥行业使用固废、危废导致其二氧化硫排放浓度超标的问题,通过脱硫试验筛选具有催化作用的三氧化二铁、氧化镁制备成新型高效催化脱硫剂,其脱硫效率高于工业级氢氧化钙.在河南DD水泥有限公司进行了新型高效催化脱硫剂的工业应用试验.结果表明:与工业级氢氧化钙相比,新型高效催化脱硫剂具有更高的脱硫效率,钙硫物质的量比降低了56.7%.通过新型高效催化脱硫剂的使用,可满足水泥企业二氧化硫质量浓度<35 mg/Nm3的超低排放要求,且此过程无废弃物产生.制备的新型高效催化脱硫剂具有广阔的应用前景.
期刊
The electroreduction reaction of CO2 (ECO2RR) requires high-performance catalysts to convert CO2 into useful chemicals.Tran-sition metal-based atomically dispersed catalysts are promising for the high selectivity and activity in ECO2RR.This work presents
开发了一种新型的纳米微晶silicate-1(S-2)的合成方法.与常规的silicate-1(S-1)相比,S-2具有较小的粒径和光滑的晶体表面.当S-2作为晶种合成纳米ZSM-5聚集体时,ZSM-5团聚体为尺寸为0.8~1.0μm的单分散颗粒,构成团聚体的ZSM-5晶体为b轴厚度为60~80 nm的纳米薄片.ZSM-5纳米薄片沿着同一方向规则地堆叠形成独特的孔结构,该孔结构包括1.3 nm的均一孔道和25 nm的宽尺寸孔道.
Flexible pressure sensors with high sensitivity are desired in the fields of electronic skins,human-machine interfaces,and health monitoring.Employing ionic soft materials with microstructured archi-tectures in the functional layer is an effective way tha
In conventional ethylene carbonate (EC)/propylene car-bonate (PC) electrolyte,sodium metal reacts spontaneously and del-eteriously with solvent molecules.This significantly limits the prac-tical feasibility of high-voltage sodium metal batteries based on
The enzyme-mediated elevation of reactive oxygen species (ROS) at the tumor sites has become an emerging strategy for regulating intracellular redox status for anticancer treatment.Herein,we proposed a camouflaged bionic cascaded-enzyme nano-reactor based
The development of lightweight and integration for electronics requires flexible films with high thermal con-ductivity and electromagnetic interference (EMI) shielding to overcome heat accumulation and electromagnetic radiation pollution.Herein,the hierar
Atomically dispersed metals on N-doped carbon sup-ports (M-NxCs) have great potential applications in various fields.However,a precise understanding of the definitive relationship between the configuration of metal single atoms and the dielectric loss pro
Out-of-plane microneedle structures are widely used in various applications such as transcutaneous drug delivery and neural signal recording for brain machine interface.This work presents a novel but simple method to fabri-cate high-density silicon (Si) m