论文部分内容阅读
设f是Rn(n≥3)中单位球面∑n-1上的可积函数,Sθ(f)是步长为θ∈R的平移算子.σδN(f)是Fourier-Laplace级数的δ阶Ceaaro平均.如果∫π0 |Sθ(f)-f|p/θ2dθ∈ L∞ (∑n- 1 ),则∑∞k=0 |σλk(f)-f|p∈L∞(∑n-1)且∑∞k=0(f)-f|p∈L∞(∑n-1 ),其中Eλk(f)为Cesaro平均σλk的等收敛算子.